
Causal Graphs vs. Causal Programs:
The Case of Conditional Branching

Sam Witty
College of Information and Computer Sciences

University of Massachusetts Amherst
Amherst, MA, United States

switty@cs.umass.edu

David Jensen
College of Information and Computer Sciences

University of Massachusetts Amherst
Amherst, MA, United States

jensen@cs.umass.edu

Abstract
We evaluate the performance of graph-based causal discov-
ery algorithms when the generative process is a probabilistic
program with conditional branching. Using synthetic ex-
periments, we demonstrate empirically that graph-based
causal discovery algorithms are able to learn accurate associ-
ational distributions for probabilistic programs with context-
sensitive structure, but that those graphs fail to accurately
model the effects of interventions on the programs.
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1 Introduction
Randomized experiments are often considered to be the gold
standard for estimating causal effects, but experiments are
often prohibitively expensive, unethical, or otherwise im-
practical. A set of techniques has been developed over the
past 25 years that analyze observational data to learn causal
models in the form of directed graphical models [1, 2, 5].
However, these algorithms implicitly assume that a graphi-
cal model will accurately represent the true data-generating
process. This assumption is not always valid, and this is the
key motivation behind our work.

We contrast causal graphical models with a more expres-
sive framework: causal probabilistic programs. Causal prob-
abilistic programs are imperative programs specified using
compositions of primitive programming constructs; includ-
ing deterministic assignment, stochastic assignment, condi-
tional branching, and loops. Causal probabilistic programs
extend probabilistic programs to represent causal dependen-
cies in exactly the same way probabilistic graphical models
are extended to causal graphical models: via introduction
of an intervention semantics [4]. Applying an intervention
do(X = x) to a causal program is accomplished by replacing
all assignments of X in the program with the determinis-
tic assignment statement X = x . Intervening on X differs
from conditioning on X in that conditioning can influence
estimates of the distribution of X ’s ancestors and induce
dependence between two ancestors which are marginally
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independent, whereas intervention cannot result in either of
these outcomes. Much like causal graphical models, causal
probabilistic programs include a semantics for generating
samples and evaluating probability densities of marginal,
conditional, and post-intervention distributions of random
variables. Alternatively, causal probabilistic programs can
be thought of as a generalization of causal graphical models,
encapsulating a broader space of generative processes. In
this work we are particularly interested in causal probabilis-
tic programs with context-sensitive structure, i.e. programs
where there exists at least one random variable such that
the set of its parents differ for two possible executions of
the program. Programs with conditional branching can have
context-sensitive structure, as demonstrated in Algorithm 2.

While there has been some work on extending probabilis-
tic graphical models to incorporate conditional branching
for parameter inference [3], we are unaware of any work on
the causal implications of branching in graphical models or
on structure learning for generative processes with context-
sensitive structure.We hope that our work will help motivate
researchers to consider more expressive representations for
causal models, as well as to provide preliminary insight into
methods for detecting conditional branching from samples
of probabilistic programs.

2 Synthetic Experiments
To evaluate the performance of graph-based structure learn-
ing algorithms we: (1) generate samples from each of the
probabilistic programs in Algorithms 1 and 2; (2) learn a
Markov equivalence class of graphical models using the max-
min hill climbing algorithm [6]; (3) estimate local conditional
probability distributions1; and (4) generate post-intervention
samples from both the given probabilistic program and the
learned graphical model for the intervention do(A = a).
For these synthetic experiments all prior parameters are
sampled independently as follows: θ ∼ Normal(0, 3), µ ∼
Normal(0, 1),σ ∼ γ−1(3, 1),p ∼ β(5, 5). The post-intervention
distributions are based on the intervention do(A = 5).

1Learned local conditional probability distributions for each variable are
defined as Gaussian random variables, where the conditional mean and
variance are estimated using random forest regression models with respect
to the random variable’s parents.
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Algorithm 1 Causal Graphical Model

A← Normal(µA,σ
2
A)

B ← Normal(µB +A ∗ θAB ,σ
2
B )

C ← Normal(µC +A ∗ θAC ,σ
2
C )

D ← Normal(µD + B ∗ θBD +C ∗ θCD ,σ
2
D )

Algorithm 2 Branching Program
if Bernoulli(p) then

A← Normal(µA,σ
2
A)

C ← Normal(µC +A ∗ θAC ,σ
2
C )

else
C ← Normal(µC ,σ

2
C )

A← Normal(µA +C ∗ θCA,σ
2
A)

B ← Normal(µB +A ∗ θAB ,σ
2
B )

D ← Normal(µD + B ∗ θBD +C ∗ θCD ,σ
2
D )

Importantly, for any given execution of the Branching
Program the set of C’s and A’s parents depends on a draw
from a Bernoulli random variable. Therefore, an interven-
tion do(A = a) indirectly changes the distribution of C for
some subset of executions and an intervention do(C = c)
indirectly changes the distribution of A for all other execu-
tions. A graphical model corresponding to this probabilistic
program would require that A is an ancestor of C and that C
is an ancestor of A. Note also that the set of V-structures is
consistent between the two branches, implying that the set
of conditional independencies relating A,B,C and D does
not depend on the Bernoulli random variable. We ran similar
experiments for probabilistic programs where C is a medi-
ator if Bernoulli(p) and a collider otherwise (which results
in different V-structures between the two branches). This
produced similar empirical findings.

Figure 1. Causal Graphical Model Pairwise and Marginal
Distributions.

Figure 2. Branching Program Pairwise and Marginal Distri-
butions.

3 Results and Discussion
As shown in Figure 1, samples from the learned model are
qualitatively similar to samples from the generative model.
With the exception of some roughness in the learned post-
intervention distribution, the learned model captures the
linear pairwise relationships as well as the unimodal mar-
ginal distributions. However, Figure 2 shows that while the
learned pre-intervention distribution is similar to the genera-
tive pre-intervention distribution for the branching program,
this is not true for the post-intervention distributions. In this
setting, the learned model fails to capture the multi-modality
of the generative model’s post-intervention distributions.
The learned model has high probability density in regions
where the generative model has low probability density. For
example, observe the marginal distribution of C .

These results provide evidence that learning the structure
of some causal probabilistic programs cannot be achieved
using established graph-based structure learning algorithms
with observational data. However, we believe that interven-
tional data may help to disambiguate between candidate
probabilistic programs. Specifically, we conjecture that a
promising approach to detecting context-sensitive causal
structure will involve mixture modeling of post-intervention
distributions. We speculate that the number of additional
mixture components after intervention is closely related to
the number of code blocks with differing causal structure.We
expect this line of thinking to be promising for future work
on learning the structure of causal probabilistic programs.
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