
BAYESIAN STRUCTURAL CAUSAL INFERENCE
WITH PROBABILISTIC PROGRAMMING

A Dissertation Presented

by

SAMUEL A. WITTY

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2023

Robert and Donna Manning College of
Information and Computer Sciences

© Copyright by Samuel A. Witty 2023

All Rights Reserved

BAYESIAN STRUCTURAL CAUSAL INFERENCE
WITH PROBABILISTIC PROGRAMMING

A Dissertation Presented

by

SAMUEL A. WITTY

Approved as to style and content by:

David Jensen, Chair

Daniel Sheldon, Member

Justin Domke, Member

Vikash Mansinghka, Outside Member

Ramesh K. Sitaraman, Associate Dean for
Educational Programs and Teaching
Robert and Donna Manning College of
Information and Computer Sciences

DEDICATION

For my wife Katharine, and our faithful pup Mira.

ACKNOWLEDGMENTS

During the course of my PhD I have had the good fortune to be surrounded by

brilliant and inspiring peers, collaborators, mentors, and friends who made this foray

into academic endeavors possible.

My PhD Advisor, David Jensen, has been a constant source of insight, inspiration,

and guidance over this past six years of academic pursuits, always encouraging me to

be expansive in my thinking and precise in my execution. Even before I was a member

of his research group at UMass, the Knowledge Discovery Lab, David inspired me to

think about ideas that would later make their way into this thesis, bridging the gap

between causal inference and probabilistic programming. Perhaps more important

than any specific technical guidance, which was certainly plentiful, David taught me

what it meant to study computation itself as a scientific discipline, rather than just as

a means to some other end. Anyone who’s taken his course on research methods in

Computer Science will tell you that David is a fabulous mentor.

In the final three years of my PhD I worked closely with Vikash Mansinghka as a

visiting student in his group at MIT, the Probabilistic Computing Project. I learned

and accomplished more in this three year period than any other prior, thanks in no

small part to Vikash’s mentorship and guidance. Vikash helped me take abstract ideas

and transform them into concrete research contributions, all while maintaining an

overarching perspective of where the work was going. Vikash’s vision for the field of

probabilistic programming is nothing short of inspiring, and I’m truly grateful that I

had the opportunity to play a small role in it. Looking back, it’s clear that I would

not have completed this thesis had it not been for either David or Vikash’s support.

v

Thanks also to the other members of my committee, Justin Domke and Dan

Sheldon, for helpful feedback on earlier drafts of this thesis. While I haven’t worked

with either Justin or Dan directly, I am inspired by their work on probabilistic inference

and grateful to have their support. Additionally, thanks to Laura Balzer for providing

additional mentorship and guidance as the second reader on my synthesis project for

candidacy to the PhD program.

In the Knowledge Discovery Lab at UMass, I had the good fortune of working

with many fellow students who have positively impacted my research trajectory. In

our work together on Deep Reinforcement Learning [136], Emma Tosch helped me

find my voice as a researcher and taught me how to take programming seriously as

an intellectual discipline. In our work together on GP-SLC (see Chapter 4), Kenta

Takatsu played an instrumental role and was an excellent thought partner throughout.

Very early conversations with Javier Burroni and Dan Garant planted the seeds for

what would later become Chapter 5, long before I knew much about probabilistic

programming. I was also fortunate to collaborate with other KDL students, staff, and

affiliated faculty on a variety of funded projects for IARPA and DARPA. I learned

a great deal from working with Katerina Marazopoulou, Daniel Corkill, Kaleigh

Clary, Akanksha Atrey, Andy Zane, Justin Clarke, David Westbrook, and Przemyslaw

Grabowicz. Thanks also to David Arbour, Amanda Gentzel, Reilly Grant, Purva

Pruthi, Sankaran Vaidyanathan, Jack Kenney, Kate Avery, Erica Cai, and Pracheta

Amaranath for all of the feedback and camaraderie over the years.

At the Probabilistic Computing Project at MIT, I was also fortunate to work

with, and be inspired by, many incredible students and affiliated researchers. Working

closely with Alex Lew on causal Bayesian program synthesis (Chapter 5) taught

me a tremendous amount about metaprogramming, and probabilistic programming

generally. Frequent whiteboarding sessions with Marco Cusamano-Towner taught me

about the inner workings of Gen [28], and probabilistic inference. Cameron Freer’s

vi

feedback on early drafts of simulation-based identifiability (Chapter 6) and Feras

Saad’s feedback on GP-SLC (Chapter 4) taught me to be precise about mathematical

claims. Many discussions with McCoy Becker taught me how to think practically about

programming languages, and how to think deeply about performance. Thanks also to

Tan Zhi-Xuan, Nishad Gothoskar, Ulrich Shaechtle, Jameson Quinn, Veronica Weiner,

Ben Zinberg, Andrew Bolton, Sharan Yalburgi, Austin Garrett, Matin Ghavamizadeh,

George Matheos, Amanda Brower, and Rachel Paiste for all of the feedback and

support during my time at the Probabilistic Computing Project.

In addition to my time at the Knowledge Discovery Lab and at the Probabilistic

Computing Project, I have had the great fortune of collaborating with researchers

at other universities and organizations. Most importantly, I’d like to thank the

participants in the “Causal Probabilistic Programming Reading Group”, organized

by Eli Bingham. Starting in 2020 and approximately once per week Eli Bingham,

Zenna Tavares, Robert Ness, Alex Lew, Jeremy Zucker, Jimmy Koppel, and I would

discuss connections between causal inference and probabilistic programming. These

discussions culminated in an early version of the work that would later become

Chapter 3, which I presented at the 2021 International Conference on Probabilistic

Programming. I’m grateful to be able to continue working with Eli and Zenna at

the Basis Research Institute, along with new colleagues Emily Mackevicius, Martin

Jankowiak, Raj Agrawal, Rafal Urbaniak, Ria Das, Karen Schroeder, Archana Warrier,

and Marjorie Xie. I’m especially grateful to Rafal Urbaniak for his detailed feedback

on this thesis. It’s a remarkable experience to have such capable thought partners in

our shared exploration of this new and exciting research subfield, and I’m excited to

see where we take it in the coming years.

I am grateful to the many friends I made at UMass and MIT over these past six

years. Among many other activities, I’ll fondly remember sharing meals with Ryan and

Rachel Harb, rock climbs with Katie Keith, homework cocktails with Conrad Holtsclaw,

vii

runs and chats with Justin Svegliato, Dungeons and Dragons with Connor Basich and

Sam Baxter, and ping pong sessions with Marco Cusamano-Towner, Nishad Gothoskar,

and McCoy Becker. Of course, this effort was also supported by my many friends

who knew me before this journey into academia. In no particular order, thanks to Ian

Dawud, Nick Shrewsbury, Ross Rivers, Gio Musto, Trevor White, Max Bridges, Devon

Dawson, Brian Cantrell, Eric Spencer, Ryan Pollin, Gene Rush, Nate Jones, Liyang

Wang, Mike Olson, Ben McDaniel, Andrew Marchev, John Zarcone, Jake Grant, Alexa

Clark, Cody Ball, Christin Sluter, Dovrah Plotkin, Austen Higgins-Cassidy, Jacob

Neilson-Philips, and many others along the way.

Thanks to my parents, Richard and Ruth Witty, for giving me the freedom to

explore my own interests, even if they didn’t always appear to be on the path to

“success”. I’m grateful to have learned to think critically and to seek truth from a

young age.

Finally, thanks to my extremely supportive wife Katharine for the several years

of patience as I took on this seemingly endless venture. Katharine always listened

compassionately as I shared my frustrations about roadblocks, and listened enthu-

siastically as I shared my excitement while I completed work that would eventually

turned into this thesis. Thanks for being my partner for these past several years, and

for all the years that follow.

viii

ABSTRACT

BAYESIAN STRUCTURAL CAUSAL INFERENCE
WITH PROBABILISTIC PROGRAMMING

SEPTEMBER 2023

SAMUEL A. WITTY

B.S., UNIVERSITY OF MASSACHUSETTS AMHERST

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David Jensen

Reasoning about causal relationships is central to the human experience. This

evokes a natural question in our pursuit of human-like artificial intelligence: how

might we imbue intelligent systems with similar causal reasoning capabilities? Better

yet, how might we imbue intelligent systems with the ability to learn cause and effect

relationships from observation and experimentation? Unfortunately, reasoning about

cause and effect requires more than just data: it also requires partial knowledge

about data generating mechanisms. Given this need, our task then as computational

scientists is to design data structures for representing partial causal knowledge, and

algorithms for updating that knowledge in light of observations and experiments.

In this dissertation, I explore the Bayesian structural approach to causal inference

in which probability distributions over structural causal models are one such data

structure, and probabilistic inference in multi-world transformations of those models

ix

as the corresponding algorithmic task. Specifically, I demonstrate that this approach

has two distinct advantages over the dominant computational paradigm of causal

graphical models: (i) it expands the breadth of compatible assumptions; and (ii)

it seamlessly integrates with modern Bayesian modeling and inference technologies

to facilitate quantification of uncertainty about causal structure and the effects of

interventions. Specifically, doing so allows the emerging and powerful technology of

probabilistic programming to be brought to bear on a large and diverse set of causal

inference problems.

In Chapter 3, I present an example-driven pedagogical introduction to the Bayesian

structural approach to causal inference, demonstrating how priors over structural

causal models induce joint distributions over observed and latent counterfactual

random variables, and how the resulting posterior distributions capture common

motifs in causal inference. In particular, I show how various assumptions about

latent confounding influence our ability to estimate causal effects from data and I

provide examples of common observational and quasi-experimental designs expressed

as probabilistic programs. In Chapter 4, I present an advanced application of the

Bayesian structural approach for modeling hierarchical relational dependencies with

latent confounders, and how to combine such assumptions with flexible Gaussian

process models. In Chapter 5, I present a prototype software implementation for

causal inference using probabilistic programming, accommodating a broad class of

multi-source observational and experimental data. Finally, in Chapter 6, I present

Simulation-Based Identifiability, a gradient-based optimization method for determining

if any differentiable and bounded prior over structural causal models converges to a

unique causal conclusion asymptotically.

x

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . ix

LIST OF TABLES . xv

LIST OF FIGURES . xvi

NOTATION . xix

EPIGRAPH . xxii

CONTRIBUTIONS . xxiii

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation . 1

1.1.1 Thesis Overview . 3
1.1.2 Key Claims . 5

2. BACKGROUND .9

2.1 Causal Inference . 9

2.1.1 Potential Outcomes . 9

2.1.1.1 Instrumental Variable Designs . 12
2.1.1.2 Regression Discontinuity Designs . 14
2.1.1.3 Structured Latent Confounding . 15

2.1.2 Pearl’s Structural Approach . 16

xi

2.1.2.1 Instrumental Variable Designs: A Graphical
Perspective . 20

2.1.2.2 Regression Discontinuity Designs: A Graphical
Perspective . 21

2.1.2.3 Structured Latent Confounding: A Graphical
Perspective . 22

2.2 Bayesian Statistics . 23

2.2.1 Approximate Inference — Importance Sampling 24

2.3 Gaussian Processes . 26

2.3.1 Kernel Specification . 28

2.4 Probabilistic Programming . 29

2.4.1 Gen and the Generative Function Interface 30

3. BAYESIAN STRUCTURAL CAUSAL INFERENCE 34

3.1 Overview . 35
3.2 Linear Example . 37

3.2.1 Hierarchical Bayesian Extension . 39
3.2.2 Posterior Inference . 42
3.2.3 Intervention Program Transformations . 46
3.2.4 Causal Queries . 48
3.2.5 Composing Intervention Program Transformations with

Hierarchical Priors over Probabilistic SCMs 50
3.2.6 Stronger Causal Assumptions as Priors . 54
3.2.7 Quasi-Experimental Designs . 57
3.2.8 A Note on Traced Randomness and Reparameterization 60

3.3 Choosing a Formalism for Causal Inference: Strengths and Limitations
of the Bayesian Approach . 61

3.4 Related Work . 63
3.5 Conclusion . 64

4. HIERARCHICAL CAUSAL INFERENCE USING GAUSSIAN
PROCESSES WITH STRUCTURED LATENT
CONFOUNDERS . 65

4.1 Background . 67

4.1.1 Object Conditioning . 67

xii

4.1.2 Causal Inference with Latent Confounders . 68
4.1.3 Gaussian Process Models . 68

4.2 Gaussian Processes with Structured Latent Confounders 69

4.2.1 Conditional Density . 71

4.3 Estimating Treatment Effects . 72

4.3.1 Approximate Inference: Elliptical Slice and
Metropolis-Hastings . 73

4.3.2 Exact Inference: Gaussian Process Conditioning 73

4.4 Asymptotic Posterior Consistency . 75

4.4.1 Setup. 76

4.5 Experiments . 79

4.5.1 Synthetic Data . 81
4.5.2 Infant Health and Development Program . 82
4.5.3 New England Energy Consumption . 83
4.5.4 Limitations . 86

4.6 Related Work . 86
4.7 Conclusions . 87

5. MULTI-SOURCE EXPERIMENTAL DATA . 89

5.1 A Conceptual Example . 90
5.2 Priors on Causal Models . 92
5.3 Likelihoods for Experiments . 93
5.4 Inference . 95
5.5 Discussion . 96
5.6 Related Work . 97

6. SBI: A SIMULATION-BASED TEST OF IDENTIFIABILITY
FOR BAYESIAN STRUCTURAL CAUSAL INFERENCE 99

6.1 Related Work . 101
6.2 Identifiability in Bayesian Causal Inference . 102

6.2.1 Example: Confounded Linear Model . 105

6.3 Simulation-Based Identifiability . 106

6.3.1 Likelihood Ratio Test . 109

xiii

6.3.2 Example: Confounded Gaussian Process . 112

6.4 Experiments . 115

6.4.1 Causal Graphical Models. 116
6.4.2 Linear Quasi-Experimental Designs. 117
6.4.3 Gaussian Process Quasi-Experimental Designs. 118

6.5 Discussion . 119

7. CONCLUSION . 121

7.1 Summary of Contributions . 121

7.1.1 Key Claims Restated . 122

7.2 Future Work . 123

7.2.1 Causal Probabilistic Programming Language Design 123
7.2.2 Applications. 125

APPENDIX: ADDITIONAL EXPERIMENTAL DETAIL 127

BIBLIOGRAPHY . 133

xiv

LIST OF TABLES

Table Page

3.1 Common causal queries . 49

4.1 Results on synthetic data with additive and multiplicative nonlinear
treatment and outcome functions. 82

4.2 Results on the modified infant health and development program
benchmark, shown separately for treated and untreated
individuals. 84

4.3
√

MSE for the New England energy consumption benchmark, with
bias = 9◦F and 25 samples per state. 85

6.1 Description of quasi-experimental designs benchmarks. 102

6.2 Empirical results on quasi-experimental design benchmarks. 115

A.1 The functional form of t and y for 2 synthetic datasets with
continuous treatments and nonlinear outcome functions. 128

xv

LIST OF FIGURES

Figure Page

2.1 Example backdoor causal graph. 19

2.2 Example instrumental variable graph. 20

2.3 Example regression discontinuity graph . 21

2.4 Example structured latent confounding graph . 22

3.1 Implementation of the linear structural causal model in Gen 38

3.2 Implementation of the linear probabilistic structural causal model in
Gen . 40

3.3 Visual representation of sampling from a single probabilistic structural
causal model . 41

3.4 Implementation of the linear Bayesian structural causal model in
Gen . 41

3.5 Visual representation of the joint distribution of probabilistic
structural causal models and data. 42

3.6 Visual representation of the posterior distribution of probabilistic
structural causal models given data. 43

3.7 Mock implementation of an intervention program transformation in
Gen . 46

3.8 Implementation of the linear twin world probabilistic structural causal
model in Gen . 47

3.9 Implementation of the linear queried probabilistic structural causal
model in Gen . 48

3.10 Visual representation propagating a single probabilistic structural
causal model to a causal query . 50

xvi

3.11 Implementation of the linear queried Bayesian structural causal model
in Gen . 51

3.12 Visual representation propagating a distribution over probabilistic
structural causal model to a distribution over causal queries 52

3.13 Visual representation of the posterior distribution of probabilistic
structural causal models given data, and the resulting distribution
over causal queries. 53

3.14 Visual representation propagating a distribution over probabilistic
structural causal model to a distribution over causal queries with
stronger causal assumptions . 54

3.15 Visual representation of the posterior distribution of probabilistic
structural causal models given data, and the resulting distribution
over causal queries with stronger causal assumptions. 56

3.16 Implementation of the regression discontinuity design in Gen 58

3.17 Implementation of the structured latent confounder Design in Gen 58

3.18 Re-implimentation of linear_twin_probabilistic_scm from
Figure 3.8 to permit conditioning on x, t,y. 61

4.1 GP-SLC model summary. 66

4.2 Process and results for New England energy consumption
benchmark. 80

4.3 Comparison among methods on the New England energy consumption
benchmark. 81

5.1 Grammar of MiniStan . 90

5.2 A conceptual example combining structure learning and parameter
estimation. 91

5.3 Interventions expressed as MiniStan source code transformations. 92

5.4 Graphical meta-model for the Bayesian synthesis approach to causal
structure and parameter learning. 93

5.5 Gen implementation of causal inference via Bayesian synthesis. 94

xvii

5.6 Julia implementation of the atomic (“do”) intervention and the shift
intervention. 95

5.7 Posterior probability of the existence and strength of causal
dependence between a student’s belief and her subsequent
outcome . 96

6.1 Overview of simulation-based identifiability . 100

6.2 Summaries of particle-based optimization. 112

6.3 Quantitative insight for conditional average treatment effects. 117

xviii

NOTATION

Here, I provide the mathematical notation used throughout the remainder of this
thesis, borrowed heavily from Bengio et al [13].

Numbers and Arrays

a A scalar (integer or real)

x A vector

X A matrix

X A tensor

In Identity matrix with n rows and n columns

I Identity matrix with dimensionality implied by context

x A scalar random variable

x A vector-valued random variable

X A matrix-valued random variable

Sets and Graphs

A A set

R The set of real numbers

{0, 1} The set containing 0 and 1

[[n]] The set of all integers between 1 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

A\B Set subtraction, i.e., the set containing the elements of A that are not in B

G A graph

PaG(xi) The parents of xi in G

xix

Indexing

xi Element i of vector a, with indexing starting at 1

Xi,j Element i, j of matrix X

Xi,: Row i of matrix X

X:,i Column i of matrix X

ai Element i of the random vector a

Ai,j Element i, j of random matrix A

Ai,: Row i of random matrix A

A:,i Column i of random matrix A

Linear Algebra Operations

X> Transpose of matrix X

X � Y Element-wise (Hadamard) product of X and Y

det(X) Determinant of X

Calculus
dy

dx
Derivative of y with respect to x

∂y

∂x
Partial derivative of y with respect to x

∇xy Gradient of y with respect to x
∂f

∂x
Jacobian matrix J ∈ Rm×n of f : Rn → Rm∫

f(x)dx Definite integral over the entire domain of x∫
S
f(x)dx Definite integral with respect to x over the set S

Probability and Information Theory

P (a) A probability distribution over a discrete variable

p(a) A probability distribution over a continuous variable, or over a variable
whose type has not been specified

a ∼ P Random variable a has distribution P

Ex∼P [f(x)] or Ef(x) Expectation of f(x) with respect to P (x)

Var(f(x)) Variance of f(x) under P (x)

Cov(f(x), g(x)) Covariance of f(x) and g(x) under P (x)

N (µ,Σ) Gaussian distribution with mean µ and covariance Σ

xx

Functions
f : A→ B The function f with domain A and range B

f(x;θ) A function of x parametrized by θ. (Sometimes I write f(x) and omit the
argument θ to lighten notation)

log x Natural logarithm of x

1condition a function which returns 1 if the condition is true and 0 otherwise

Sometimes I use a function f whose argument is a scalar but apply it to a vec-
tor, matrix, or tensor: f(x), f(X), or f(X). This denotes the application of f to
the array element-wise. For example, if C = σ(X), then Ci,j,k = σ(Xi,j,k) for all valid
values of i, j and k.

xxi

The half minute which we daily devote to the

winding-up of our watches is an exertion of labour

almost insensible; yet, by the aid of a few wheels, its

effect is spread over the whole twenty-four hours.

Charles Babbage

xxii

CONTRIBUTIONS

The chapters in this dissertation are based on the following publications1:

Chapter 3

Causal Probabilistic Programming without Tears.
Bingham*, Koppel*, Lew*, Ness*, Tavares*, Witty*, Zucker*. (*Equal Contribution, Al-
phabetical)
International Conference on Probabilistic Programming. (2021).

Chapter 4

Causal Inference using Gaussian Processes with Structured Latent Confounders.
Witty, Takatsu, Jensen, and Mansinghka.
International Conference on Machine Learning. (2020).

Chapter 5

Bayesian Causal Inference via Probabilistic Program Synthesis.
Witty*, Lew*, Jensen, and Mansinghka. (*Equal Contribution)
International Conference on Probabilistic Programming. (2020).

Chapter 6

SBI: A Simulation-Based Test of Identifiability for Bayesian Causal Inference.
Witty, Jensen, and Mansinghka.
arXiv PrePrint. (2021).

1I have significantly expanded on the content in Chapter 3 for this Dissertation. Additionally,
in the conclusion, I briefly discuss some of my other contributions connecting causal inference
to applications in: (i) evaluating the generalization capabilities of deep reinforcement learning
agents [136]; and (ii) searching for fair machine learning classifiers [65], as well as preliminary work
on the expressiveness of higher-order probabilistic programming languages for causal models [134].

xxiii

CHAPTER 1

INTRODUCTION

In this thesis, I hope to contribute both conceptually and pragmatically towards

the long-term goal of understanding and engineering intelligent systems. Specifically,

I focus on intelligent systems that can reason with uncertainty about probabilistic

cause-effect relationships and that can learn from observation and experimentation.

Imbuing intelligent systems with causal representations allows them to reason about

global consequences of local interventions, giving them the ability to reason about how

their decisions influence their environment. The suite of techniques I develop aims to

be both conceptually clarifying—reducing previously distinct ideas from the social

sciences, economics, statistics, and computer science to probabilistic modeling and

inference—and practically useful—opening the door to new capabilities in AI-assisted

scientific discovery, data-driven public policy, robotics, and a host of other application

areas.

1.1 Motivation

The goal of building intelligent systems that learn from experience is certainly not

novel to this thesis. Machine learning, the subfield of artificial intelligence focused

on engineering intelligent systems that learn, has been a goal for computer scientists

almost as long as the field of computer science has existed. Typically, machine learning

methods are partitioned in terms of the characteristics of the data they learn from;

supervised learning for feature-label pairs, unsupervised learning for features alone, and

reinforcement learning for sequential interaction with an environment that provides

1

feedback. However, perhaps a more meaningful distinction can be made by looking at

what can be accomplished by the learned intelligent system. In other words, we might

instead wish to categorize methods based on the kinds of questions these intelligent

agents are learning to answer, not simply how they learn to answer them.

One class of such questions are of the form “what is?” or what are typically

called associational questions. For example, a face detection system built using a

convolutional neural network architecture may answer the question “given an image

as input, how many faces are there and where are they located?” Answering these

kinds of questions poses a number of challenging methodological problems, as any

such algorithm will have to implicitly or explicitly reason about physically salient

concepts such as spatial continuity, occlusion, and symmetry. However, intelligent

systems may need to answer questions beyond “what is?”, such as questions of the

form “what will be if?” Answers to these kinds of questions allow intelligent agents to

make decisions that manipulate the world, or to generalize to new environments [136],

not just describe its current configuration. These types of questions, and their answers,

are typically called causal.

Unfortunately, asking intelligent systems to answer causal questions poses a number

of technical challenges that don’t appear when answering associational questions.

These challenges are ones we’re intimately familiar with in everyday life. From a

very young age we’re taught that “correlation does not equal causation”; or in other

words, associational relationships may mislead us if interpreted causally. Without

this wisdom, we may erroneously infer that banning ice cream will almost entirely

eliminate swimsuit sales, as ice cream consumption and swimsuit sales are highly

correlated. Instead, we know that the correlation between ice cream consumption

and swimsuit sales manifests in our observations because of the confounding effect of

seasonality. Simply put, summer weather encourages people to both swim more and

eat more ice cream.

2

While true, the mantra that “correlation does not equal causation” is unnecessarily

pessimistic; it ignores the fact that humans are able to make causal judgments every

day, many of which accurately predict the result of changes to an environment. A

more honest and actionable account of causal inference is given by Judea Pearl

that, “behind every causal conclusion there must lie some causal assumption” [96].

Without such assumptions there are an unbounded collection of causal explanations

that are compatible with our observations of the world, but that imply different

conclusions. With causal assumptions however, we (partially) restrict the space of

causal explanations and we may thus come to unique (or a small collection of) causal

conclusions that are consistent with data.

1.1.1 Thesis Overview

What then is an appropriate representation for encoding causal assumptions, and

what are the underlying recipes for manipulating these representations to yield causal

conclusions? In other words, what are the data structures and algorithms that enable

causal reasoning? In this thesis, I explore a representation of causal knowledge as

probability distributions (or priors) over structural causal models (SCMs) as one such

data structure and probabilistic inference as the underlying algorithmic specification

for updating that knowledge in light of data.

On the surface, a fully specified SCM is just a particular template for defining

a distribution over observed (endogenous) variables in terms of a collection of de-

terministic functions of latent (exogenous) random noise variables.1 However what

makes SCMs “causal” is that they permit a kind of model transformation called an

intervention. Interventions take as input a SCM and returns a SCM in which some of

1I elaborate on the definitions of a SCM in Chapter 2 and on the definitions for and intuition
behind the Bayesian structural approach in Chapter 3.

3

the deterministic functions have been modified.2 As a canonical example, applying an

atomic intervention to a structural causal model, denoted by Pearl and colleagues as

do(x = x), is accomplished by replacing the structural function x = f(Pa(x)) with

the expression x = x, and leaving all other functions unchanged. This atomic inter-

vention models the scenario where some external force has set a particular attribute,

irrespective of its original data generating mechanism. For example, we might use this

mathematical description of an intervention to model how the world would change if

we imposed new masking requirements in an infectious disease transmission model,

whereas our model posits that absent an intervention people choose whether to wear

a mask based on their own preferences.

With an intervention semantics in hand, structural causal models implicitly denote

more than just a joint distribution over a collection of random variables. They also

denote a joint distribution over random variables after some dependency-altering

intervention has been applied, which I call counterfactual random variables throughout

this thesis3. In this way, structural causal models explicitly encode causal assumptions,

and queries applied to these counterfactual random variables represent answers to the

kinds of “what if” questions that can be used to inform decision making.

In practice, choosing a single fully specified SCM is often far too strong of a

modeling choice; we don’t often know the exact mechanisms by which data (and

counterfactuals) are generated in any particular domain. Instead, we would like to

2Other related formalisms can be used to define prior distributions over causal models that are
not isomorphic to a SCM, such as models where interventions influence the number of entities in a
system, not just their attributes [124]. Note also that SCMs can define cyclic dependencies, and can
thus reflect causal models with context-dependent causal structure, i.e. conditional branching [134].
However, Markovian causal graphs, the more refined data structure on which most graph-based
algorithms operate, do not permit context-dependent structure, as they enforce that the candidate
collection of structural causal models are acyclic.

3Here, the term “counterfactual” refers to to an instantiation of a random variable in a transformed
version of the world in which an intervention has been applied.

4

posit our uncertainty over a class of plausible SCMs, and then use observational and

experimental data to further disambiguate between members of that class4

In this thesis, I explore the Bayesian structural approach to causal inference and

show how it can be implemented and supported by probabilistic programming5. As

the name suggests, the Bayesian structural approach to causal inference involves being

Bayesian about structural causal models, that is representing uncertainty explicitly in

terms of probability distributions (or priors) over structural functions and exogenous

noise. Placing a prior over structural causal models in this way implicitly induces

a joint distribution over observed and counterfactual random variables, i.e. a multi

world construction, and therefore a distribution over counterfactual random variables

conditional on observations. Using this approach, causal inference simply reduces

to (a carefully constructed) probabilistic inference problem. With this conditional

query as a target, a user can then apply their choice of exact or approximate inference

algorithm, including Monte Carlo [37, 35], variational [102, 131], or some combination

of approaches thereof [33, 115]. In Chapter 3, I expand on this description.

1.1.2 Key Claims

In the remainder of this chapter I summarize five key claims about the Bayesian

structural approach as a computational foundation for causal inference, and a summary

of how the remainder of the thesis provides evidence in support of each claim.

4Pearl’s causal graphical approach uses directed acyclic graphs to represent classes of plausible
SCMs. In Chapter 2, I discuss the key differences between the graphical and the Bayesian structural
representations of causal assumptions.

5It is somewhat misleading to describe the contributions of this thesis as an alternative to existing
formalisms, as it borrows heavily from existing well-studied data structures. Specifically, the Bayesian
structural approach I explore in this thesis borrows the underlying structural formalisms from Pearl’s
structural approach [97], and expresses causal estimands in terms of counterfactuals reminiscent of
potential outcomes [61]. As I’ll elaborate on in Chapter 3, what is novel is how a user expresses
uncertainty over these borrowed structural objects, and the algorithms that operate over them.

5

Claim 1. The Bayesian structural approach provides an expressive substrate for

representing practical assumptions for causal inference that cannot be expressed using

graph structure alone.

I provide evidence for Claim 1 in Chapters 4, 5, and 6. In Chapter 4, I show how to use

the Bayesian structural approach to estimate causal effects in hierarchical relational

settings in which latent confounders are shared among multiple observed instances.

In Chapter 5, I show how to use the Bayesian structural approach to model multi-

source observational and experimental data, including experiments reflecting atomic

interventions, encouragement designs, and other custom program transformations.

Finally, in Chapter 6, I show how the Bayesian structural approach can be used to

model instrumental variable designs [26] and regression discontinuity designs [73].

None of these applications are covered by the causal graphical approach.

Claim 2. A large and diverse collection of qualitative findings scattered throughout

the causal inference literature emerge as a consequence of the Bayesian structural

approach to causal inference.

I provide evidence in support of Claim 2 in Chapters 3 and 6. In Chapter 3, in a

series of worked examples, I show that the Bayesian structural approach agrees with

Pearl’s graphical approach in a simple linear Gaussian example. In Chapter 6, I show

that the Bayesian structural approach produces conclusions that are consistent with

known identifiability results for graph-based [96] and econometric quasi-experimental

designs, including instrumental variable designs [26], within-subjects designs [43], and

regression discontinuity designs [73].

Claim 3. The Bayesian structural approach can be used to represent broad uncertainty

over structural functions and to learn complex nonlinear dependencies from data.

I provide evidence in support of Claim 3 in Chapters 4 and 6. Specifically, in Chapter 4,

I show how to combine rich causal assumptions about relational dependencies in

6

combination with flexible Gaussian process models to estimate causal effects. In

Chapter 6, I show how similar Gaussian process models can be used to extend

instrumental variable and regression discontinuity designs.

Claim 4. The Bayesian structural approach can provide valuable insight into causal

inference problems even without exact probabilistic inference, which is NP-hard in

general.

I provide evidence in support of Claim 4 in Chapters 4, 5, and 6. In Chapters 4 and

5, I show that using the Bayesian structural approach with approximate inference

techniques produces accurate estimates for structure learning and effect estimation

tasks. In Chapter 6, I prove that determining when a causal query is identifiable does

not require exact probabilistic inference, and instead only requires determining whether

there exist two likelihood-equivalent structural causal models that induce different

effect estimates, a task that can more easily be approximated via gradient-based

optimization of a custom loss function on simulated data.

Claim 5. The Bayesian structural approach provides a computational foundation on

which a software engineering discipline of causal inference can be constructed, enabling

modular, composable, and extensible software artifacts that facilitate causal inference.

I provide evidence in support of Claim 5 in Chapters 3 and 5, demonstrating how

the Bayesian structural approach can be implemented in software on top of exist-

ing probabilistic programming systems supplemented with program transformation

interventions. In Chapter 3, I show how function composition in a probabilistic

programming language can be used to implement layers of successively more uncertain

model specifications, i.e. a Bayesian hierarchical model of structural causal models. In

Chapter 5, I present a prototype software system for causal inference with observational

and experimental data, implementing interventions as syntax-rewriting program trans-

7

formations on a restricted domain-specific language for causal problems, embedded in

the Gen probabilistic programming language [28] using a custom interpreter.

8

CHAPTER 2

BACKGROUND

In this chapter I discuss the necessary background on causal inference, Bayesian

statistics, Gaussian process models, and probabilistic programming.

2.1 Causal Inference

Perhaps due to to the diversity of its applications and the relatively minimal

contact between academic fields of computer science, economics, statistics, and public

policy, many distinct formalisms for causal inference have been proposed over the

past several decades. The two most prominent of these formalisms are known as

the Neyman-Rubin potential outcomes framework [61], which frames the problem of

causal inference principally as a statistical missing data problem, and Pearl’s structural

approach [97], which instead frames the problem in terms of mathematical logic.

2.1.1 Potential Outcomes

As the name implies, the potential outcomes framework sets up causal inference

problems as having two “potential outcomes”, denoted with parenthetical notation as

yi(1) and yi(0), corresponding to what the outcome would be for the i’th individual if

they receive a binary treatment (ti = 1) or do not receive that treatment (ti = 0)1.

However, in any given dataset, we only observe one of these two potential outcomes,

and the other remains latent. Instead, the outcome we observe, yi, is determined by the

actual observed treatment assignment, or as an equation, yi = yi(1) · ti + yi(0) · (1− ti).

1The potential outcomes formalism easily generalizes to categorical or continuous treatments.

9

Not being able to observe all potential outcomes is the source of the “fundamental

problem of causal inference”, namely that without strong assumptions we can only

unambiguously estimate (sub)population-level effects, and not effects on a specific

individual [61]. However, estimating even these (sub)population-level effects requires

assumptions about the data generating mechanism.

In the potential outcomes framework, the most common and well-studied assump-

tions for causal inference with observational data are known as strong ignorability,

stable unit treatment value, and overlap, and are defined as follows:

Assumption 2.1.1. Strong Ignorability. Treatment assignment (and thus the

mechanism by which we observe potential outcomes) is independent of the value of

those potential outcomes conditional on pre-treatment covariates xi
2. Somewhat more

formally:

(yi(1), yi(0)) ⊥⊥ ti|xi

Assumption 2.1.2. Stable Unit Treatment Value. The potential outcomes for

each instance i are independent of the treatment assignment of any other instance j.

Again, somewhat more formally3:

(yi(1), yi(0)) ⊥⊥ tj,∀j 6= i

Assumption 2.1.3. Overlap. Each treatment assignment has nonzero probability

under each joint assignment of the covariates.

0 < p(ti|x = x) < 1,∀x ∈ support(x)

2Strictly speaking, more stringent assumptions are necessary to yield identifiability. For some
counterexamples and caveats see the work of Cinelli et al. [25].

3Typically, the stable unit treatment value assumption (SUTVA) also include an additional
assumption about there being no hidden variations in treatment assignment [61]. Unfortunately, this
component of the SUTVA assumption is much more difficult to express succinctly in mathematical
notation, so I omit it for brevity.

10

While these three assumptions are not sufficient to answer unit-level queries, such as

the individual treatment effect — (yi(1)− yi(0)) for some i ∈ [[n]] — they are sufficient

to estimate the sample average treatment effect, SATE =
∑

i∈[[n]][yi(1)− yi(0)]. Using

the law of iterated expectations we can come to the following standard result [111]:

SATE :=
∑
i∈[[n]]

[yi(1)− yi(0)] = Ex[E[yi|ti = 1, x]− E[yi|ti = 0, x]] (2.1)

In essence, Equation 2.1 states that if strong ignorability, SUTVA, and overlap

hold, then the sample average treatment effect can be estimated from observational

data simply by estimating expectations of observable quantities. In other words, we’ve

translated from an expectation of (latent) potential outcomes, yi(1) and yi(0), to an

expectation over observed actual outcomes, yi. It is worth noting that this equivalence

does not directly lead to conclusions about how we should estimate these expectations

to achieve the best statistical properties, only that it is possible from the variables

we can observe. Answering the question of how best to estimate these quantities is a

very active field of research. Interested readers should read Imbens and Rubin’s recent

textbook [61] for a survey of causal effect estimation methods and their statistical

properties.

So far, I have discussed how one specific collection of assumptions leads to a

statistical quantity that can then be estimated from data. What if instead we

don’t want to make these exact assumptions? Unfortunately, the potential outcomes

approach does not provide a general algorithmic recipe for translating from assumptions

to target statistical quantities4. As a result, the statistics literature on causal inference

4There has been some progress on algorithmically representing the potential outcomes literature.
For example, single-world intervention graphs [106] represent assumptions and concepts in potential
outcomes using graphical representations, and the potential outcomes calculus [82] provides an
algorithmic solution to identifying nested counterfactuals that are common in the potential outcomes
literature, such as mediation analysis. However, none of these approaches represent the parameteric
or structural assumptions necessary for the quasi-experimental designs discussed throughout this
thesis.

11

has instead focused on collectively building up what is a essentially a catalog of

causal inference assumption templates, and specialized estimation techniques for these

common causal inference problems. Unfortunately, this leaves an awkward gap for

practitioners who want to make use of custom assumptions.

Here, I describe three quasi-experimental designs [22], i.e. non-experimental

settings that share some characteristics with controlled or randomized experiments,

that violate at least one of the three assumptions needed to derive Equation 2.1. These

quasi-experimental designs are a useful substrate for understanding the trade-offs

between existing formalisms, and as a target for our Bayesian structural approach in

subsequent chapters.

2.1.1.1 Instrumental Variable Designs

Instrumental variable designs represent settings in which strong ignorability is

violated, meaning that treatment assignment and potential outcomes are no longer

conditionally independent given covariates. In the nomenclature of causal inference,

in these settings treatment and outcome may be confounded. Instead, we may be able

to take advantage of a special (collection of) covariate(s) called an instrument(s) that

can be used to estimate effects despite the fact that treatment and outcome may be

confounded.

In order to yield a valid instrument, and thus enable unbiased effect estimation in

the presence of confounding, we must make some additional assumptions. While I

omit the formal specification of these assumptions [8] for brevity, the most important

assumptions are given below:

Assumption 2.1.4. Exclusion: The instrument, zi, has no effect on outcome except

in its influence on the treatment, ti.

(yi(1), yi(0)) ⊥⊥ zi

12

Assumption 2.1.5. As-if Random: The instrument, zi, is not influenced by any

latent variables that also influence treatment, ti, or outcome, yi.

ti ⊥⊥ zi|xi

yi ⊥⊥ zi|xi, ti

In addition to these assumptions, instrumental variables also require parametric

assumptions about how zi influences ti, although many different variants of these

parametric assumptions may be sufficient [79]. For example, in the discrete case,

assuming that the effect of zi on ti is monotonic is sufficient. Stating these assumptions

in their most general form is out of scope for this thesis [122]. In Chapter 6, I discuss

instrumental variable designs with stronger-than-necessary parametric assumptions

for continuous treatment and outcome variables.

Instrumental Variable Example: Military Service and Lifetime Earnings.

As an example, consider the question of whether military service increases lifetime

earnings [7]. To answer this question we could simply compare the lifetime earnings

for individuals who did and did not enlist in the military over some time period, but

this estimation procedure would likely lead to biased estimates of the effect we’re

interested in. In actuality, individuals who are inclined to enlist in the military may

have certain latent attributes that also influence their subsequent lifetime earnings,

such as their level of education or pre-enlistment financial conditions. However, during

the period of the Vietnam war military enlistment was not entirely self selecting;

many individuals’ military service was driven by the mandatory draft. In this setting,

within the subset of the population of individuals who were healthy and eligible for

service, an individual’s observed draft ticket serves as one such instrumental variable.

One could reasonably argue that the draft ticket satisfies the exclusion condition;

13

an individual’s draft ticket does not influence their lifetime earnings except through

their military service, and also the as-if random condition; the draft tickets are not

influenced by any of the individual’s latent attributes.

2.1.1.2 Regression Discontinuity Designs

Regression discontinuity designs represent settings in which overlap/positivity is

violated, meaning that some assignments of covariates lead to a zero probability of a

particular treatment assignment. This poses a problem, as we no longer have data

in all regions of treatment/covariate space with which to estimate the conditional

expectations in Equation 2.1.

More precisely, (sharp) regression discontinuity designs violate the overlap as-

sumptions by having treatment be assigned deterministically according to whether a

particular (set of) continuous covariate(s) is above or below a known threshold. In

other words, we have one of the following two equations, where 1 is the indicator

function and a ∈ R is known:

ti = 1xi>a or ti = 1xi<a

In these settings the question of whether we can estimate causal effects from

observational data is somewhat more nuanced [73]. For example, if we assume that

the relationship between covariates and outcome is linear, then the sample average

treatment effect can be estimated by extrapolating the linear relationships to regions

of covariate space in which we have no data, thus estimating the expectations in

Equation 2.1. If we are unwilling to make such an assumption, but are willing to

assume that the relationship between covariates and outcome is smooth then we can

estimate the sample average treatment effect only locally near the discontinuity at a.

This query is known as the conditional average treatment effect for what are hopefully

14

obvious reasons. In Chapter 6 I elaborate on some of the nuances of the regression

discontinuity design, and how the Bayesian structural approach reflects those nuances.

Regression Discontinuity Design Example: Test Taking and Course Enroll-

ment. Perhaps the most standard example of a regression discontinuity design is

also its first known formal application; assessing the effect of honorary awards on

lifelong academic achievement [125]. The causal hypothesis under scrutiny was that

receiving an award leads to higher long term academic achievement, as recognition

leads to “favorable attitudes towards intellectualism”. However, receiving an award

and eventually obtaining an advanced degree may be confounded by many other

factors, such as the quality of the student’s early education, and by proxy their test

scores during their early education. In this setting, even if we believe that such

test scores satisfy the strong ignorability assumption, the way observational data is

generated poses a problem. Specifically, in our observational data students are only

provided an academic award if their test performance exceeds some threshold. This is

exactly the setting described mathematically above.

2.1.1.3 Structured Latent Confounding

Settings with structured latent confounding (often referred to as multi-level, clus-

tered, or panel data) represent a particular violation of the stable unit treatment value

assumption, meaning that potential outcomes for one individual may be statistically

dependent on the treatment assignment for another, perhaps due to latent confounders

that are shared amongst individuals. Instead, in these settings we can assume that

data is observed according to coherent groups, and that strong ignorability holds

locally within each group. Letting wi be the group assignment of unit i, then we have

the following:

(yi(1), yi(0)) ⊥⊥ ti|xi,wi

15

In settings where the cardinality of wi is fixed, and does not scale with the number

of units n, then this is exactly equivalent to the strong ignorability condition. However,

in some settings the number of groups may continue to increase as n increases. Again,

like the instrumental variable and regression discontinuity designs, whether we can

estimate the effect unambiguously depends on whether we are willing to make (strong)

parametric assumptions. For example, if we assume linear and additive relationships

between treatment, covariates, and outcome, then we can estimate effects even if the

size of each group remains finite as n→∞ [56, 134].

Structured Latent Confounding Example: Evaluating Kindergarten Re-

tention Policy. One natural area in which individual units are partitioned into

grouped structure is when trying to make causal inferences in educational settings.

For example, if we are interested in understanding the effect of retaining students in

kindergarten on subsequent academic performance [58], we may wish to better inform

policy decisions by first analyzing observational data. One challenge, however, is that

statistical dependencies within a given school may differ from statistical dependencies

across schools, as the schools’ policies may simultaneously influence whether students

are retained and their subsequent academic achievements. In this setting, we can

model the observational data using a multi-level model, accounting for heterogeneity

between schools.

2.1.2 Pearl’s Structural Approach

Here, I describe structural causal models, the key mathematical object underlying

Pearl’s graphical approach, as well as the Bayesian structural approach that I explore

throughout this thesis. This section aims to both: (i) introduce the notation used

throughout the remainder of this thesis; and (ii) provide background on causal graphical

models as a formalism for causal reasoning and inference.

16

Definition 2.1.1. Structural Causal Models. A structural causal model (SCM)

is a four-tuple M = (V,F,X,U), where: V = {t,y,x1, . . . ,xd} is a set of ob-

served variables, F = {ft, fy, fx1 , . . . , fxd} is a set of deterministic functions, X =

{εt, εy, εx1 , . . . , εxd} is a set of exogenous latent noise variables, and U = {u1, . . . ,ud′}

is a set of latent confounder variables. Each observed random variable in V is

assigned deterministically according to its corresponding structural function, e.g.

y = fy(t,u1, εy), where t = ft(·)5. By construction, each ε ∈ X is an argument

of exactly one structural function, and each u ∈ U is an argument of at least two

structural functions.6

Definition 2.1.2. Probabilistic Structural Causal Model. A probabilistic struc-

tural causal model is a tuple Mp = (M, p(X), p(U)), where: M is a structural causal

model, p(X) is a distribution over values of latent exogenous noise variables, ε ∈ X,

and p(U) is a distribution over values of latent confounders, u ∈ U.

Definition 2.1.3. Atomic Intervention. An atomic intervention is a mapping

I : T ×F → F , where T is the domain of t and F is the space of structural functions

F. Specifically, given an intervention assignment t ∈ T and a collection of structural

functions F ∈ F , an atomic intervention I(t,F) produces a collection of structural

functions F′ in which ft has been replaced with the function t = t, and all other

structural functions are left unchanged7.

5Note that each structural function defines a process for generating a vector of instances, y, in
which each element yi represents a single data instance. Additionally, the cardinality of each v ∈ V
may differ, such as when t and y are length n vectors of students’ time spent studying and their
grades respectively, and x1 is a length m vector of course difficulties, where n is the number of
students and m is the number of courses. I elaborate on this example in Chapter 4.

6Here, I slightly modify the definition in Pearl’s classic textbook “Causality” [97] to distinguish
between confounders and exogenous noise, and to clarify that I only consider interventions on a single
variable, t, and I only consider queries on a single variables, y. In full generality SCMs (and the
structural Bayesian approach) applies when interventions are applied to any subset of endogenous
variables and with multiple outcomes of interest.

7The assumption that such an atomic intervention exists is referred to as “modularity” or
“autonomy” [4, 97]. Interventions are often denoted using the notation do(t = t). I choose the

17

Given a probabilistic structural causal model Mp, we can define a collection of

counterfactual random variables V(t) = {y(t),x1(t) . . . ,xd(t)}, which are induced by

the pushforward measure of F′ applied to samples drawn from p(X) and p(U), where

F′ = I(t,F)8. In this way, we can think of a probabilistic structural causal model as

implicitly defining a (potentially infinite) exchangeable sequence of random variables

indexed by intervention assignment, V,V(t1), ...,V(tk), each of which conceptually

maps to a parallel world in which a different intervention has been applied. Here,

exchangeability follows directly from Di Finneti’s Theorem, as V,V(t1), ..,V(tk) are

all conditionally independent given X and U by construction. As a result, we can

trivially marginalize out any collection of counterfactual random variables as desired

without consequence, only considering the relevant counterfactual worlds that help us

answer a specific question. It is worth noting, however, that even given a single known

collection of structural functions, F, any pair of factual and counterfactual variable sets

V,V(t1), ...,V(tk) are not independent, as they share the same sampled values of X

and U, albeit with (slightly) different structural functions F and F′. I denote the joint

distribution over factual and counterfactual variables as p(V,V(t1), ...,V(tk)|Mp) for

reasons that will become obvious when we induce a distribution over Mp in Chapter 3.

Thusfar, I have described the structural approach given a single known probabilistic

structural causal model Mp. However, in practice we will most often not wish to

choose a single model a priori, and instead would prefer to specify broader uncertainty

over a collection of candidate structural causal models.

functional notation shown here to emphasize that counterfactuals are themselves random variables
via a pushforward measure through I. This corresponds to the expository figures shown in Chapter 3.

8While these random variables are invoked using transformations of structural causal models ala
Pearl, they are reminiscent of the potential outcomes framework’s framing of causal inference as a
missing data problem, hence the similar parenthetical notation. This observation that counterfactuals
in the structural approach are equivalent to potential outcomes is not novel to this thesis, e.g. see
Chapter 7 in Pearl’s book “Causality” [97].

18

T Y

X

Figure 2.1: Example backdoor causal graph. Here, p(y(t)) can be estimated from data
using x as a backdoor adjustment set. This is true despite the possible latent confounding
between t and x.

Typically, in Pearl’s formalism uncertainty over structural causal models is encoded

in the structure of a directed acyclic graph known as a causal graph. A causal graph

is best thought of as a partial specification of a structural causal model, constraining

the set of arguments to each structural function. Specifically, each node in a graph

G represents a random variable in V, and the set of incoming edges to each node

represents the set of arguments to that variable’s structural function. In addition to

directed edges, causal graphs also contain bidirected edges between pairs of nodes in

G, representing the possibility of latent confounders. By omitting bidirected edges

between pairs of variables v1 and v2 we are making the assumption that there does not

exist a latent variable u ∈ U that is an argument to both v1 and v2’s corresponding

structural functions. These causal graphs are also sometimes called nonparametric

structural equation models, as they place no restriction on the structural functions

themselves except for their collection of arguments.

Perhaps surprisingly, this minimal specification is sometimes enough to draw causal

conclusions from data. For example, the backdoor adjustment formula [97] states that

if there exists a collection of nodes Z ⊂ V in G that block all backdoor paths from t to

y, the causal query p(y(t)) can be expressed equivalently as Ez∼p(Z)[p(y|t = t,Z = z)],

which only involves probabilistic expressions that can be estimated from observational

data. See Figure 2.1 for a visual representation of one such graph. This backdoor

19

T YX

Figure 2.2: Example instrumental variable graph. Both the exclusion and as-if random
assumptions are satisfied with this causal graph. However, additional parametric assumptions
are necessary to estimate the effect of t on y. These parametric assumptions cannot be
expressed using graph structure alone.

adjustment formula is a special case of the more general do-calculus [97], which is a

sound and complete algorithm for recovering similar adjustment formula from causal

graph structure alone9. Perhaps even more surprisingly, in some cases p(y(t)) can

be estimated from data even when a bidirected edge between t and y exists without

additional parametric assumptions.

While these results are impressive, many practical assumptions cannot be expressed

in terms of graph structure alone; they require additional restrictions on structural

functions. To see this, let us again revisit our quasi-experimental design examples

from Section 2.1.1.

2.1.2.1 Instrumental Variable Designs: A Graphical Perspective

Of the assumptions used in the instrumental variable design, two of them can be

expressed in terms of the structure of a causal graph. Specifically, the exclusion and

as-if random assumptions can be expressed graphically as follows:

Assumption 2.1.6. As-if Random: There does not exist a bidirected edge between

any instrument, x, and either the treatment, t, or the outcome, y, in G.

9A particularly observant reader will notice the similarities between Pearl’s backdoor adjustment
formula and Equation 2.1 derived from the law of iterated expectation. In fact, modulo notation, the
conclusions are equivalent. What is different however is that in Pearl’s formalism the assumption of
strong ignorability is derived from the assumed causal graph, and is not given axiomatically as in the
potential outcomes framework.

20

T Y

X

Figure 2.3: Example regression discontinuity graph. The assumption that t is as-
signed deterministically according to the value of x is not reflected in this causal graphical
representation. As a result, methods that only consider graph structure would incorrectly
conclude that estimands such as the sample average treatment effect could be unambiguously
estimated from data. Instead, the story is much more nuanced.

Assumption 2.1.7. Exclusion: There does not exist a directed path between any

instrument, x, and the outcome, y, that does not pass through treatment, t.

We can see an example of these two assumptions being satisfied in the graph shown

in Figure 2.210. However, as I discussed in Section 2.1.1, instrumental variable designs

also require additional parametric assumptions. Unfortunately, these parametric

assumptions cannot be expressed in terms of graph structure alone.

2.1.2.2 Regression Discontinuity Designs: A Graphical Perspective

Unlike the instrumental variable design, in which some of the design-specific

assumptions could be encoded in terms of graph structure, the design-specific assump-

tions behind the regression discontinuity design cannot. For example, the closest

graphical representation to the regression discontinuity design shown in Figure 2.3

looks nearly identical to the backdoor adjustment graph in Figure 2.1. In fact, taken

näıvely the graph in Figure 2.3 should be even more straightforward to reason about,

as it does not contain any possible latent confounders. Unfortunately, the parametric

restrictions relating t and x tell a different story, as I discussed in Section 2.1.1. Just

10Here, we use x to denote the instrument instead of z to remain consistent with our SCM
definition.

21

T Y

Figure 2.4: Example structured latent confounding graph. The assumption that
any latent confounders, u, are shared between instances of t and y that belong to the
same group is not reflected in this causal graphical representation. As a result, methods
that only consider graph structure would incorrectly conclude that estimands such as the
sample average treatment effect could not be unambiguously estimated from data. Like the
instrumental variable and the regression discontinuity examples, the truth is more nuanced.

like in the instrumental variable design, automated algorithms that operate on graphs

do not apply in these common settings.

2.1.2.3 Structured Latent Confounding: A Graphical Perspective

Again, and perhaps not surprisingly, representing structured latent confounding

using causal graphical models poses some conceptual challenges. Ignoring the assump-

tion that confounders are shared between individuals belonging to the same groups,

we may come to the causal graph shown in Figure 2.4. This awkwardness comes

from the fact that causal graphical models, unlike probabilistic graphical models, do

not contain a semantics for plates11. Unfortunately, this graphical model would lead

us to believe that no conclusions can be drawn about the effect of t on y, when in

reality we may be able to leverage the structured latent confounding assumption to

our advantage.

11In Chapter 4, we show a somewhat informal graphical representation of the structured latent
confounder setup using plates. However, graph-based algorithms such as the do-calculus do not
contain an explicit semantics of plates, and thus cannot use them for reasoning about identifiability
or for producing adjustment formula. There does exist a partial semantics for plates in causal models,
including work on d-separation in relational settings [81]. However, this work does not progress as
far as the do-calculus.

22

2.2 Bayesian Statistics

In this section, I provide an extremely brief introduction to Bayesian statistics and

probabilistic inference. For additional background, I recommend reading one of the

many excellent books on the topic, including those by Gellman [44] and Murphy [85].

The key idea behind Bayesian statistics is conceptually simple, though challenging

in practice: represent uncertain belief about the world in terms of a joint probability

distribution over models and data, and then use axioms of probability to update that

belief in light of data. Somewhat informally, let p(θ,x) denote a joint distribution over

parameters, θ ∈ Θ, and data, x ∈ X, defined over the appropriate product measure

space. It is common to decompose this joint distribution into what is known as the

prior, p(θ), and the likelihood, p(x|θ). Intuitively, this joint distribution represents

our uncertain belief about the underlying world, and our uncertain belief about the

process for generating data. Once we observe data, we can invert the conditioning

operations as follows by using a straightforward application of Bayes’ theorem:

p(θ|x) =
p(x|θ)p(θ)
p(x)

=
p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

(2.2)

On the left we have what we want, the conditional probability over parameters

given data, a quantity known as the posterior distribution. On the right however,

we are faced with a challenge; the integral
∫
θ∈Θ

p(x|θ)p(θ)dθ, also known as the data

marginal, is often intractable to compute exactly, especially if θ is high dimensional or

continuous12. In settings where the posterior distribution is analytically intractable,

we are forced to turn to approximate methods. In Section 2.2.1, I outline one of many

templates for approximating this posterior using a technique known as importance

12There is a special class of probabilistic models known as conjugate models that lend themselves
to a closed-form analytic solution for the posterior distributions. Not only is the posterior tractable
for such models, it is also of the same distributional family of the prior. For example, the posterior
distribution of a sequence of Bernoulli trials with a beta prior distribution over the weight parameter
is itself beta distributed. Gaussian process models (see Section 2.3) are one such conjugate prior
distribution over the space of smooth continuous functions.

23

sampling. The derivations in Section 2.2.1 are heavily informed by Kevin Murphy’s

excellent textbook Machine Learning: A Probabilistic Perspective [85].

2.2.1 Approximate Inference — Importance Sampling

In order to approximate the posterior distribution, importance sampling draws

a collection of samples from some proposal distribution q, and then weights them

according to the prior density, the likelihood, and the density under the proposal.

The result of this procedure is a collection of samples that either: (i) approximate

expectations of functions of derived random variables (including posterior densities);

or (ii) can be sampled from to produce approximate samples from the posterior. In its

most general form, importance sampling is described as a technique for approximating

expectations of functions as follows:

Ex∼p(x)[f(x)] :=

∫
f(x)p(x)dx (2.3)

=

∫
f(x)q(x)

p(x)

q(x)
dx (2.4)

≈ 1

N

N∑
i=1

f(xi)
p(xi)

q(xi)
; xi

iid∼ q(x) (2.5)

Here q(x) must be a distribution that is absolutely continuous with respect to

p(x), i.e. p(x = x) > 0→ q(x = x) > 0 for all x ∈ support(x). This simple derivation

follows from the weak law of large numbers, which states that the empirical mean of

a collection of samples drawn from some distribution is an unbiased estimate of its

expectation. While this may appear to solve a different problem than the posterior

inference we are interested in, the general idea can be applied to an expectation over

the posterior, i.e. the case where θ ∼ p(θ|x), as follows:

24

Eθ∼p(θ|x)[f(θ)] :=

∫
f(θ)p(θ|x)dθ (2.6)

=
1

p(x)

∫
f(θ)p(x|θ)p(θ)dθ (2.7)

=

∫
f(θ)p(x|θ)p(θ)dθ∫
p(x|θ)p(θ)dθ

(2.8)

≈
∑N

i=1 f(θi)p(x|θi)p(θi)/q(θi)∑N
i=1 p(x|θi)p(θi)/q(θi)

; θi
iid∼ q(θ) (2.9)

An interesting special case is when f is given by the dirac-Delta function at a point

θ′, i.e. f(θ) = δ(θ − θ′), where δ(x) = 0 if x 6= 0 and
∫
X δ(x)dx = 1 if 0 ∈ X. This

special case corresponds to pointwise posterior density evaluation at θ′, and results in

the following simplification:

Eθ∼p(θ|x)[δ(θ − θ′)] = p(θ′|x) =
p(x|θ′)p(θ′)∫
p(x|θ)p(θ)dθ

(2.10)

≈ p(x|θ′)p(θ′)∑N
i=1 p(x|θi)p(θi)/q(θi)

; θi
iid∼ q(θ) (2.11)

To sample from the posterior, rather just compute its density, we can use a technique

called sampling importance resampling (SIR) [113], which generates approximate

samples from p(θ|x) by sampling with replacement from the weighted collection of

samples from the proposal q(θ). Given a collection of such samples θi
iid∼ q(θ), the

weight for each is given by the following:

wi =
p(x|θi)p(θi)/q(θi)∑N
i=1 p(x|θi)p(θi)/q(θi)

(2.12)

.

While this approximation is unbiased for all q(θ) that are absolutely continuous

with respect to p(θ), and thus p(θ|x), the choice of q(θ) can have a significant impact

25

on the variance of the estimator. Intuitively, to minimize variance we would like q(θ)

to be close as possible to p(θ|x). As an example, which I do not use in this thesis,

recent work on amortized importance sampling uses a neural network to approximate a

data-dependent proposal distribution q(θ; x) trained on synthetic data from p(θ,x) [72].

In the remainder of this thesis, I use a variety of approximate inference techniques

that on the surface may appear to be quite distinct from the importance sampling

method presented here. For example, in Chapter 5 I use Sequential Monte Carlo [35],

and in Chapter 4 I use a combination of Elliptical Slice Sampling [86] and Random Walk

Metropolis Hastings [53]. Looking at their implementations alone, the only attribute

these methods seem to share with importance sampling is that they approximate

expectations with samples. In fact, it is possible to show that all of these sampling-

based algorithms can be expressed as importance sampling in an augmented state-space

with the inclusion of carefully selected auxiliary variables [41]. This unification is not

unique to sampling-based methods, and recent work has made substantial progress

organizing and unifying the previously disparate collection of variational, sampling-

based, and other classes of methods for (approximate) probabilistic inference [5, 27, 33,

75, 89]. As I discuss in Chapter 3, reducing causal inference to probabilistic inference

means that we can seamlessly bring to bear all of the impressive advancements in

probabilistic modeling and inference technology for causal inference problems.

2.3 Gaussian Processes

Gaussian processes are a flexible technique for probabilistic modeling. Again,

somewhat informally, Gaussian processes are distributions over deterministic functions,

yi = f(xi) = φ(xi)
>θ, θ ∼ N (µ,Σ), where φ : X→ Rd is some basis function, µ is a

length d mean vector and Σ is a d× d symmetric positive definite covariance matrix.

Perhaps surprisingly, the distribution p(y|x) of a collection of outputs y = [y1, . . . , yn]

conditional on a vector of inputs x = [x1, . . . , xn] can be tractably evaluated even

26

in the limit as d→∞ by using the kernel trick [103]. In these settings, a Gaussian

process can instead be summarized by a mean function, m : X→ R and covariance

function, k : X× X→ R, which I refer to as the kernel function [103]. By definition,

any finite collection of draws from a Gaussian process prior are jointly Gaussian

distributed, y ∼ N (m,K), where mi = m(xi) and Ki,j = k(xi, xj) for all i, j ∈ [[n]].

It is common to set the prior mean function to m(xi) = 0, which I do throughout this

thesis.13 Intuitively, the kernel function defines a notion of similarity between inputs,

and the Gaussian process model simply states that instances with similar inputs (i.e.

high kernel function) typically have similar outputs (high covariance).

This identity is useful for two reasons: (i) it provides an explicit likelihood, which

can be used to perform inference over latent variables [71, 127]; and (ii) it enables

closed-form out-of-sample probabilistic prediction [103]. I take advantage of both

of these characteristics in this thesis, performing approximate inference over latent

confounders and sampling counterfactual outcomes in Chapter 4.

To sample from the posterior, we first extend the joint distribution to include

both observed outcomes y and unobserved outcomes y∗ as follows, where x∗ is the

collection of inputs corresponding to y∗:

y

y∗

 |x,x∗ ∼ N(0,

K K∗>

K∗ K∗∗

) (2.13)

Here, for a collection of m unobserved instances, K∗ is the n×m matrix of kernel

functions applied to each combination of observed and unobserved instances’ inputs.

Similarly, K∗∗ is the m×m matrix of kernel functions applied to each combination of

13A vector y sampled from a Gaussian process should not be confused with a vector y with each
element sampled i.i.d from a Gaussian distribution. Gaussian processes sample all elements of y
jointly from a multivariate Gaussian, where the “similarity” between elements of x determines the
covariance between elements of y.

27

unobserved instances’ inputs. As the joint distribution over y and y∗ is Gaussian, the

conditional distribution p(y∗|y,x,x∗) is also Gaussian, and is given by the following:

y∗|y,x,x∗ ∼ N (K∗K−1y,K∗∗ −K∗K−1K∗>) (2.14)

This formulation describes a noise-free Gaussian process model. To model additive

Gaussian noise on the observed outputs, simply replace K with K + Inσ
2, where σ2

is the noise variance. I assume additive Gaussian noise throughout this thesis, and

leave extensions with non-Gaussian noise [121] as future work.

2.3.1 Kernel Specification

Intuitively, the kernel function defines what it means for two inputs xi and xj to be

similar, and thus induce similar outcomes yi and yj. By choosing a particular kernel,

or even a particular prior over kernels, we implicitly place an inductive bias over the

choice of functions we would expect to see a priori14. In this thesis, I exclusively use

finite-dimensional Gaussian processes, or infinite-dimensional Gaussian processes with

(variants of) automatic relevance determination (ARD) kernels for Gaussian process

models, which are a generalization of the commonly used squared exponential kernel.

For xi, xj ∈ Rd, the ARD kernel is given as follows:

k(xi, xj) = s · exp

[
−

d∑
k=1

(xi,k − xj,k)2

λk

]
(2.15)

Here, s ∈ R+ and λk ∈ R+ for all k ∈ [[d]] are hyperparameters that dictate the

typical shape of functions drawn for the Gaussian process prior, and are known as

the scale and lengthscale respectively. We can represent broader uncertainty over

14For this reason, Gaussian process models are best described as semi-parametric estimators
(rather than fully non-parametric estimators) when applied to causal inference problems. This
terminology aims to avoid confusion when discussing non-parametric structural equation models,
i.e. causal graphs, which place no inductive bias on structural functions besides their collection of
arguments.

28

Gaussian process models by additionally placing priors and subsequently performing

inference over these respective hyperparameters, which I do throughout this thesis.

2.4 Probabilistic Programming

Probabilistic programming is an emerging sub-field of computer science combining

insights from probability theory, generative machine learning, and programming

languages. Simply put, the trace-based class of probabilistic programming languages

(PPLs) that I discuss in this thesis extend imperative programming languages with

declarative programming interfaces for specifying probabilistic models, and backend

support for sampling, scoring, and storing random choices made during execution

in special trace data structures15. In addition, PPLs provide (partial) automation

for manipulating these traces of random choices, allowing developers and users to

implement probabilistic inference algorithms.

There are two primary reasons why one may wish to use a probabilistic programming

language: (i) they provide an expressive substrate for writing probabilistic models that

extend beyond Bayesian networks, leveraging programming constructs such as control-

flow, looping, and recursion; and (ii) they provide a software engineering foundation

for probabilistic modeling and inference, enabling the development of software artifacts

that are modular, extensible, and reusable16. To understand a bit more about how

probabilistic programming brings software engineering to probabilistic modeling and

15It is challenging to give a formal account of PPLs generally in a way that is language-agnostic,
as the mapping to familiar concepts in probability and measure theory can depend heavily on the
syntax and semantics of the language. In Gen, the language I use throughout this thesis, programs
define joint distributions over dictionary-like traces which may vary in length, but must be finite
length with probability 1. For additional theoretical detail, see Marco Cusamano-Towner’s PhD
thesis [29].

16While I do not explore the implications of language expressiveness for causal models with
rigorous PL formalisms in this thesis, preliminary results from early work in my graduate studies [134]
indicate that control flow can have important implications for causal inference. Recent work by other
researchers has also established expressivity of causal models as an important area of study [60, 124]

29

inference (and, by extension, to causal inference in the Bayesian structural approach),

it is helpful to dig deeper into the design of Gen [28], the probabilistic programming

language I use throughout this thesis.

2.4.1 Gen and the Generative Function Interface

For a casual user, Gen [28] is a general-purpose probabilistic programming language

in which one can write and reason about probabilistic models as code. Leveraging

Julia’s just-in-time compiler and fast array processing [15], the default implementation

of Gen, Gen.jl, provides fast probabilistic inference that is practical for some near

real-time applications in robotics and computer vision settings [49]. While these

accomplishments are impressive and should be celebrated, computational performance

is often not the key bottleneck when using programming languages, as evidenced

by the remarkable adoption of high-level interpreted programming languages such

as Python. Instead, programming languages should be performant and ergonomic,

allowing programmers to quickly iterate, extend, and validate their (probabilistic)

code.

It is certainly misleading to describe Gen as just a fast implementation for proba-

bilistic modeling and inference. Instead, and perhaps more significantly, Gen defines

the generative function interface (GFI). As the name implies, the GFI is an abstract

collection of methods that must satisfy pre-defined contractual properties. For example,

the definition of one such interface method, generate, is:

generate (obtaining a trace subject to constraints) This method
takes a choice map u, arguments x, and returns: (i) a trace (t, x) such
that t =̃ u, sampled using the internal proposal distribution (denoted
t ∼ q(·;x, u); as well as (ii) a weight w := p(t;x)/q(t;x, u).

As Harold Abelson and Gerald Jay Sussman describe repeatedly in their highly

influential software engineering book “Structure and Interpretation of Computer

Programs” [1], clean abstractions are necessary for engineering complex software

30

systems. Applying this principle to generative models, abstractions like the GFI are

central to engineering complex probabilistic modeling and reasoning systems. To

elaborate on this point a bit further, three tangible benefits of such an interface are

the following:

Model Composition. Gen and related systems enable composition of generative

models in two ways. First, GFI methods such as generate shown above are defined

recursively for generative functions that themselves call other generative functions.

As we will see in Chapter 3, this allows programmers to define model components as

distinct blocks of code, and call them in the body of other models the same way one

would write and compose ordinary functions in an imperative programming language.

Second, Gen provides a set of closed program transformations called combinators.

Here, closure means that a combinator applied to a generative function that satisfies

the GFI returns a generative function that also satisfies the GFI automatically. For

example, applying the map combinator to a generative function f defining a distribution

over a single data instance returns a generative function g defining a distribution

over an array of independent and identically distributed draws from f17. As we’ll see

in Chapter 3, interventions are closely related to Gen’s combinators, although they

require more introspection into the structural causal model than just the GFI can

provide.

Bayesian Workflow. For most applications, generative modeling is still very much

a human-in-the-loop endeavor. In practice, it is difficult to encode assumptions that

directly reflect our beliefs or to choose inference algorithms that traverse the posterior

17Other probabilistic programming languages include similar automated transformations of gener-
ative models for concise composition, albeit implemented somewhat differently. For example, plate
constructs in Pyro [16] broadcast traced random choices along new tensor dimensions. It is worth
noting however that in addition to being implemented using effect handlers instead of function
combinators, Pyro’s plate semantics differ somewhat from Gen’s Map combinator in that they only
assert conditional independence given all ancestors in the program.

31

landscape effectively on first attempt. As a result, many researchers have explored a

practical set of techniques known as the “Bayesian Workflow” [46]. In essence, the

Bayesian workflow is a guide for introspecting, testing, and selecting models in practice,

using Bayesian methodologies and tooling. Many of the techniques used as a part of

the Bayesian workflow, such as simulation-based calibration [123] and its variants [140],

are model-agnostic by design, only requiring that models and approximate inference

algorithms support (posterior) sampling and/or density evaluation. Therefore, rather

than implementing components of the Bayesian workflow from scratch for each model,

they can instead be implemented agnostically using GFI methods. Then, any model

written in Gen or related systems automatically enables the Bayesian workflow for free.

In Chapter 6, I discuss SBI, a supplement to the Bayesian workflow for identifiability

questions that are common to causal inference problems.

Programmable Inference. Of the many probabilistic programming languages

that have emerged in the scientific literature, the vast majority provide automated

universal inference algorithms for conditioning and marginalizing joint distributions.

When using these systems, a programmer is only responsible for encoding their

knowledge in the form of a probabilistic program, i.e. a joint distribution, and is not

responsible for designing an inference algorithm. For example, Church [48] automates

single-site Metropolis Hastings [53], which produces asymptotically consistent samples

from the posterior for any program written in its Turing complete language. While

asymptotically correct, this general-purpose algorithm often fails to converge in realistic

settings with finite compute resources. Stan [24], on the other end of the spectrum,

automates variations of Hamiltonian Monte Carlo (HMC) [55, 88] for probabilistic

programs that are isomorphic to graphical models, and contain only continuous latent

variables. HMC is often fast, but does not permit inference over discrete latent

variables, such as those necessary for representing random adjacency matrices of

directed acyclic graphs.

32

Rather than fully automating probabilistic inference, some recent languages provide

programmable high-level interfaces for programmers to implement custom inference

algorithms [83]. Inference algorithms written in Gen [28] are implemented only in

terms of GFI methods, abstracting away details of the individual model or modeling

language. In Gen, users are free to use off-the-shelf inference algorithms in the standard

library, or to write custom inference programs themselves that directly interact with

GFI methods. For example, importance sampling (see Section 2.2.1) requires sampling

and density evaluation, but does not require introspection into how those methods are

implemented. Therefore, a programmer can implement a custom inference method

that will still be valid for any model that implements the GFI, including but not

limited to any model written in Gen.jl. However, that same user may want to write a

custom algorithm that alternates between importance sampling with a custom neural

network proposal, and random walk Metropolis Hastings over disjoint blocks of latent

variables. Gen’s inference programming capabilities are particularly well suited for

pseudo-marginal Monte Carlo methods [6], in which approximate inference methods

are composed to perform inference jointly on all latent variables. Pyro [16] similarly

allows users to design custom variational families for stochastic variational inference

and custom proposal families for importance sampling.

33

CHAPTER 3

BAYESIAN STRUCTURAL CAUSAL INFERENCE

In this chapter, I discuss the foundations of the Bayesian structural approach to

causal inference, in which uncertainty over causal mechanisms is explicitly represented

as prior distributions over the probabilistic structural causal models discussed in

Section 2.1.1. Importantly, the framework presented in this chapter does not claim

that probability theory subsumes causal inference [95], only that with care it can act

as an alternative to other means of partial specification. In fact, this prior serves a

conceptually similar role to a causal graph, representing uncertain belief about the

space of SCMs a priori [12].

Unlike subsequent Chapters 4, 5, and 6, which present new methods with empir-

ical comparisons and/or theoretical proofs, this chapter lays out a general-purpose

conceptual framework for representing and reasoning about causal inference problems.

As a result, its novelty is a bit more subtle. In particular, this chapter focuses on the

novel claim that Bayesian structural causal inference implemented with probabilistic

programs is an expressive, modular, and extensible framework for representing and

reasoning about the critical assumptions that enable effective and accurate causal in-

ference, and that this framework easily generalizes to unanticipated inference scenario.

I provide evidence for this novel claim by representing common designs as probabilistic

programs, and analyzing (some of) their implications. In Section 3.4, I elaborate on

comparisons to existing literature.

34

3.1 Overview

Put succinctly, a Bayesian structural causal model is defined as follows:

Definition 3.1.1. Bayesian structural causal model. A Bayesian structural

causal model, p(Mp), is a distribution over probabilistic structural causal models,

Mp ∈ Mp, i.e. its density function p : Mp → R+ satisfies the usual axioms of

probability. Namely, that 1 =
∫
Mp

dp(Mp).

While this definition is straightforward, some care must be taken for the Bayesian

structural causal model to be coherent. A Bayesian SCM is a distribution over

probabilistic SCMs, requiring a measure over structural functions F and a random

measure over probability distributions p(X) and p(U). First, as the space of all functions

f : R→ R is not measurable [10], in this thesis I restrict my attention to distributions

over structural functions that are fully specified by a collection of parameters defined

on measurable domains, f(·; θf) where θf ∈ Rdf , with a corresponding prior, p(θf).

While Gaussian processes implicitly may contain an infinite collection of parameters

(df →∞), they can be thought of as operating on a Cartesian product of Lebesgue

measures for finite n[103]. Similarly, I restrict my attention to distributions over

exogenous noise and confounders that are fully specified by a collection of measurable

parameters, p(X; θx) and p(U; θu) where θx ∈ Rdx and θu ∈ Rdu , and with corresponding

priors, p(θx) and p(θu). While these parameterizations might at first appear to be

restrictive for practical use, this template covers a broad range of models, from

linear models to Bayesian neural networks [87]. As an example, a user can express

assumptions using Gaussian process priors [103], which I show in Chapter 4. Even

so, relaxing these restrictions, and opening the door to a broader class of Bayesian

nonparametric priors over structural causal models is an exciting area of future work.

In Section 2.2, I discussed how a hierarchical Bayesian model composes a prior

distribution over parameters, p(θ), and a likelihood for data given parameters, p(X|θ),

to fully specify a unique joint distribution, p(X, θ), and by extension a marginal

35

distribution over data, p(X), or a posterior distribution of parameters conditional on

data, p(θ|X). Similarly, a Bayesian structural causal model, p(Mp), provides all of the

necessary ingredients for the marginal and conditional quantities we are interested in

regarding factual and counterfactual quantities. Using the conditional distribution

p(V,V(t1), ...,V(tn)|Mp) induced by pushing forward randomness from p(V) and p(X)

through F as described in Section 2.1, we have the following joint distribution:

p(V,V(t1), ...,V(tk)) =

∫
Mp

p(V,V(t1), ...,V(tk)|Mp)dp(Mp) (3.1)

and the conditional distribution:

p(V(t1), ...,V(tk)|V) =
p(V,V(t1), ...,V(tk))

p(V)
(3.2)

Practitioners are often not interested in counterfactual outcomes directly, and

instead are interested in some causal query, Q(V,V(t1), ...,V(tk)), such as the sample

average treatment effect, Q =
∑n

i=1(yi(t)−yi)/n. Finally, we have that the conditional

distribution over counterfactual outcomes p(V(t1), ...,V(tk)|V) and the causal query

Q induce a pushforward distribution over causal effect, p(Q|V), as follows, where MQ

is the subset of all probabilistic SCMs in Mp that induce a causal effect Q:

p(Q|V) =
1

p(V)

∫
MQ

p(V,V(t1), ...,V(tk)|Mp)dp(Mp) (3.3)

Remarkably, in just a few equations we have represented the essence of the causal

inference problem in purely probabilistic terms, the conditional distribution of answers

to our query, Q, given observational data, V. In other words, we have managed

to reduce the problem of causal inference to one of purely probabilistic inference,

albeit over functions of counterfactual variables1. While this reduction does not fully

1Importantly, this reduction is only possible if given a prior over structural causal models,
representing our untestable assumptions about causal relationships.

36

solve our original causal inference problem, as we’ve reduced a hard causal inference

problem to a hard probabilistic inference problem, it does allow us to bring to bear

all of the impressive probabilistic modeling and inference technology to yield (often

approximate) inferences, including probabilistic programming languages like Gen [28].

3.2 Linear Example

To see how the Bayesian approach works a bit more intuitively, let us consider

an example where the space Mp contains all linear structural causal models between

three observed (or endogenous) random variables V = {t,x,y}, representing treatment,

covariates, and outcome respectively. For now we’ll make the following simplifying

assumptions:

• There exists a single latent confounder U = {u} that may influence all three

observed variables in V.

• x can influence t, and both x and t can influence y.

• Exogenous noise is additive. (e.g. y = fy(t,x,u, εy) = f ′y(t,x,u) + εy).

• Exogenous noise and latent confounders are mean-zero Gaussian distributed.

• Each instance depends only on the corresponding instance of its potential causes.

(e.g. ti = ft(xi, ui, εti))

This simple scenario can be succinctly described by the appropriately simple

family of structural causal models as follows, corresponding to Definition 2.1.1, and

parameterized by linear weights β:

37

1 @gen function linear_scm(noise::Dict{Symbol, Array{Float64, 1}},

2 confounders::Dict{Symbol, Array{Float64, 1}},

3 parameters::Dict{Symbol, Float64})

4

5 u = confounders[:u]

6 x = parameters[:beta_ux] * u + noise[:x]

7 t = parameters[:beta_xt] * x + parameters[:beta_ut] * u + noise[:t]

8 y = parameters[:beta_ty] * t + parameters[:beta_xy] * x + parameters[:beta_uy] * u + noise[:y]

9

10 return data = Dict(:x => x, :t => t, :y => y)

11 end

Figure 3.1: Implementation of the linear structural causal model in Gen. This
implementation is equivalent to the mathematical description of the structural causal model
(see Definition 2.1.1) given in Equations 3.4.

xi = βuxui + εxi

ti = βxtxi + βutui + εti

yi = βtyti + βxyxi + βuyui + εyi

(3.4)

Using a probabilistic programming language such as Gen, we can translate this

simple model to code, as shown in Figure 3.1. As discussed in Section 2.4, this Gen

program supports all of the operations we would expect on probability distributions,

including the ability to draw samples and to evaluate densities (and often gradients)

pointwise. In that sense, the mathematical description in Equations 3.4 and the code

description in Figure 3.1 are equivalent, and not merely an implementation detail for

representing mathematical concepts.2 Using this linear structural causal model, we can

place distributions on exogenous noise variables and the latent confounder to construct

a linear probabilistic structural causal model corresponding to Definition 2.1.2. In

standard mathematical notation these distributions are defined as follows:

2In Chapter 5 I show why this framing is conceptually useful, allowing us to write Gen programs
that describe distributions over causal programs themselves, a procedure known as Bayesian program
synthesis [114].

38

εxi
∼ N (0, σ2

x) εti ∼ N (0, σ2
t) εyi

∼ N (0, σ2
y) ui ∼ N (0, σ2

u) (3.5)

Again, we can write the probabilistic structural causal model as Gen code, as can

be seen in linear_probabilistic_scm in Figure 3.2, this time calling our earlier

implementation of linear_scm in Figure 3.1 without needing to re-implement the SCM

from scratch. As we’ll see throughout this chapter, the ability to compose probabilistic

programs as ordinary function calls provides an ergonomic and straightforward means

of implementing complex and extensible models.

Figure 3.3 shows a visual representation of the conditional distribution induced

by linear_probabilistic_scm if we knew the probabilistic structural causal model

exactly, i.e. if we called linear_probabilistic_scm with a single collection of

arguments3. Up until this point, all uncertainty comes from the exogenous noise, or

individual-level variation in how data comes to be generated. In practice however, it

is almost never reasonable to assume a single structural causal model exactly. Instead,

we would like to represent uncertainty over the structural functions themselves as well.

3.2.1 Hierarchical Bayesian Extension

To represent broader uncertainty over probabilistic structural causal models, we

can borrow insight from the broader practice of Bayesian statistics and represent our

uncertain belief in terms of a prior probability distribution. To do this we create a new

Gen program, linear_bayesian_scm in Figure 3.4, by: (i) generating parameters

3The figures in this chapter are inspired by Figures 1 and 3 in the abstract formalism presented
in Oliver Maclaren and Ruanui Nicholson’s evocative paper describing how inverse problems in
engineering relate to causal inference [80].

39

1 @gen function noise_model(parameters::Dict{Symbol, Float64}, n::Int64)

2

3 eps_x, eps_t, eps_y = [], [], []

4

5 for i in 1:n

6 push!(eps_x, @trace(Normal(0, parameters[:var_x]), :eps_x => i))

7 push!(eps_t, @trace(Normal(0, parameters[:var_t]), :eps_t => i))

8 push!(eps_y, @trace(Normal(0, parameters[:var_y]), :eps_y => i))

9 end

10

11 return noise = Dict(:x => eps_x, :t => eps_t, :y => eps_y)

12 end

1 @gen function confounder_model(parameters::Dict{Symbol, Float64}, n::Int64)

2 u = []

3

4 for i in 1:n

5 push!(u, @trace(Normal(0, parameters[:var_u]), :u => i))

6 end

7

8 return confounders = Dict(:u => u)

9 end

1 @gen function linear_probabilistic_scm(parameters::Dict{Symbol, Float64}, n::Int64)

2

3 noise = @trace(noise_model(parameters, n))

4

5 confounders = @trace(confounder_model(parameters, n))

6

7 return data = @trace(linear_scm(noise, confounders, parameters))

8 end

Figure 3.2: Implementation of the linear probabilistic structural causal model in
Gen. This implementation is equivalent to the mathematical description of a probabilistic
SCM (see Definition 2.1.1) with distributions over exogenous noise and confounders given by
Equations 3.5 and the SCM given by Equations 3.4. Importantly, Gen’s generative function
interface is closed under composition, allowing us to implement models like those shown
here by calling the inner Gen function as if it were ordinary code.

from some prior distribution; and then (ii) calling linear_probabilistic_scm using

those parameters.4

Unlike linear_probabilistic_scm, which takes as input a collection of dictionar-

ies containing numeric values for means, variances, and weights, our implementation

for linear_bayesian_scm in Figure 3.4 instead takes as input a collection of dictio-

4Note that while the following code is valid Julia and Gen code, it is written to optimize clarity,
not computational performance. For example, in practice we would replace the explicit loop with a
call to Gen’s Map combinator to denote conditional independence. Gen’s internal representation
(IR) automatically leverages this information to reduce likelihood computations, etc. See the Gen
paper [28] for insight into achieving performance in Gen.

40

SCM Factual Data
Simulation

Figure 3.3: Visual representation of sampling from a single probabilistic struc-
tural causal model. Here, uncertainty over simulated data comes exclusively from exoge-
nous noise and latent confounders, and not uncertainty over structural functions. In this
and subsequent illustrative figures I show induced distributions as having crisp boundaries
for aesthetic purposes. In practice, the support of induced distributions over factual (and
later counterfactual) data typically does not depend on the particular probabilistic SCM.

1 @gen function linear_bayesian_scm(parameters_prior::Dict{Symbol, Distribution}, n::Int64)

2

3 parameters = Dict()

4

5 for (variable, prior) in parameters_prior

6 parameters[variable] = @trace(prior, variable)

7 end

8

9 return data = @trace(linear_probabilistic_scm(variances, weights, n))

10 end

Figure 3.4: Implementation of the linear Bayesian structural causal model in Gen.
This implementation is equivalent to the mathematical description of a Bayesian SCM (see
Definition 3.1.1) with user-specified priors over parameters in the probabilistic SCM defined
by Equations 3.4 and 3.5. Again, implementing this extension is straightforward, as calling
generative functions is equivalent to composing probabilistic models.

naries containing probability distributions, representing our priors. Connecting the

two is remarkably straightforward: simply sample numeric values from each prior

(lines 5-7), and then use those sampled values to generate a collection of instances

from our already defined linear_probabilistic_scm (line 9). Even in this simple

example, we are seeing some of the benefits of using a probabilistic programming

languages in how models freely compose.

Figure 3.5 shows a visual representation of this new Bayesian extension of our

original linear structural causal model. Intuitively, adding uncertainty to the space

41

SCM
Simulation

Factual Data

Figure 3.5: Visual representation of the joint distribution of probabilistic struc-
tural causal models and data. Adding a prior distribution to the space of structural
causal models in our Bayesian variant broadens the resulting marginal distribution over
data. Here, and in the remainder of this chapter, darker colors represent higher density.

of probabilistic SCMs increases our resulting uncertainty in the factual data we may

observe.

3.2.2 Posterior Inference

Not only does this Bayesian extension allow us to represent broader uncertainty

over probabilistic SCMs, which is then propagated to data, we can also use the

linear_bayesian_scm in combination with data to yield a posterior distribution over

probabilistic SCMs. As a simple example, we could run Gen’s implementation of

sampling importance resampling [113] (see Section 2.2.1) to generate a single sample

from the posterior over probabilistic SCMs5. Figure 3.6 shows a visual representation

of the posterior distribution over probabilistic SCMs after conditioning on data, V.

As we’ll see later in more depth, Figure 3.6 is already alluding to a problem we often

encounter in causal inference problems; multiple probabilistic structural causal models

may induce the same distribution over factual data. Therefore, after running inference

5As written, the code in linear_bayesian_scm could not yet be used to condition on V, as the
assignment for x, t, and y in linear_scm are not traced random variables, i.e. they do not use Gen’s
@trace syntax. See Section 3.2.8 for discussion on pushing randomness from exogenous noise to
endogenous random variables.

42

SCM Factual Data

Inference

Figure 3.6: Visual representation of the posterior distribution of probabilistic
structural causal models given data. Given a Bayesian SCM and observations, V, we
can use an (approximate) inference algorithm to infer likely probabilistic SCMs that could
have generated the data.

we will not be able to distinguish between them, and the conclusions they imply about

our causal query of interest.

To see this concretely in our linear Gaussian example, we begin by analyzing the

joint density of data, V, conditional on model parameters, θ, marginalizing out the

latent confounders, U. As we’ll see later, this joint density is all we’ll need to conclude

whether data can yield unique causal conclusions6. As all of our variables are Gaussian

and all functions between them are linear, the joint density conditional on data (i.e.

the data likelihood) is also Gaussian, with the following covariance matrix7:

[u,x, t,y]>|θ ∼ N (0,Σ) (3.6)

with covariance terms given by the matrix form of our linear structural causal model,

6Here we show a closed form expression for the data likelihood, and not the full posterior. If
we assume conjugate priors we could also yield a closed form expression for the posterior, however
that will not be necessary to make the expository argument. In Chapter 6 I use a similar analysis to
develop a general approach to determining if causal queries are identifiable given data.

7The analysis here is a light elaboration on similar frequentist-style analysis by Bollen [17] and
D’Amour [30].

43

W = A ·B ·C ·D

Σ = W ·W>
(3.7)

A =

1 0 0 0

0 1 0 0

0 0 1 0

βuy βxy βty σ2
y

B =

1 0 0 0

0 1 0 0

βut βxt σ2
t 0

0 0 0 1

C =

1 0 0 0

βux σ2
x 0 0

0 0 1 0

0 0 0 1

D =

σ2
u 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

As the joint distribution on [u,x, t,y] is Gaussian, the marginal distribution of

[x, t,y] is also Gaussian with covariance given by the corresponding lower right 3× 3

block component of Σ. As a result, the six combinations of covariances (i.e. unique

elements of Σ) between pairs of endogenous random variables, V = {x, t,y} is given

by the following collection of equations:

44

cov(x,x) = β2
uxσ

2
u + σ2

x

cov(x, t) = βuxσ
2
u(βut + βuxβxt) + βxtσ

2
x

cov(x,y) = βuxσ
2
u(βtyβut + βux(βtyβxt + βxy) + βuy) + σ2

x(βtyβxt + βxy)

cov(t, t) = β2
xtσ

2
x + σ2

t + σ2
u(βut + βuxβxt)

2

cov(t,y) = βtyσ
2
t + βxtσ

2
x(βtyβxt + βxy) + σ2

u(βut + βuxβxt)(βtyβut + βux(βtyβxt + βxy) + βuy)

cov(y,y) = β2
tyσ

2
t + σ2

u(βtyβut + βux(βtyβxt + βxy) + βuy)
2 + σ2

x(βtyβxt + βxy)
2 + σ2

y

(3.8)

Unfortunately, this system of equations does not have a unique solution for any

parameters θ in terms of the six pairwise covariance terms. In fact, there are an infinite

collection of parameters in the pre-image of any given covariance matrix, Σ, forming

what Alex D’Amour calls an “ignorance region” [30]. Perhaps this is not surprising,

as we have six “knowns” on the left-hand side of the system of equations that we are

attempting to relate to ten unknown parameters on the right-hand side. Therefore,

we should never hope to recover all of the parameters from data alone. However, later

I’ll discuss the perhaps more surprising conclusion that we can sometimes construct

a unique solution for a subset of the parameters of interest that are particularly

informative for our causal questions, even in the presence of latent confounders.

But how does this anecdote of non-injectivity relate to our Bayesian story thusfar?

To see the connections, note that the six covariance terms form a sufficient statistic for

the joint distribution over [x, t,y]. This implies that any two collections of parameters,

θ1 and θ2, that induce the same covariance matrix over [x, t,y] will, by definition, have

equal likelihood, i.e. p(x, t,y|θ1) = p(x, t,y|θ2). By extension, the posterior odds ratio

for any pairs reduces to the prior odds ratio, p(θ1|x, t,y)/p(θ2|x, t,y) = p(θ1)/p(θ2),

even as n → ∞. We’ll call this inability to disambiguate parameters (and causal

conclusions) non-identifiability. I substantially elaborate on this argument and its

implications in Chapter 6.

45

1 function intervention(model, intervention_assignment::Array{Float64, 1})

2 ...

3 return intervened_model

4 end

1 @gen function linear_intervened_scm(noise::Dict{Symbol, Array{Float64, 1}},

2 confounders::Dict{Symbol, Array{Float64, 1}},

3 parameters::Dict{Symbol, Float64})

4

5 u = confounders[:u]

6 x = parameters[:beta_ux] * u + noise[:x]

7 t = $(intervention_assignment) # [1., ..., 1.]

8 y = parameters[:beta_ty] * t + parameters[:beta_xy] * x + parameters[:beta_uy] * u + noise[:y]

9

10 return data_cf = Dict(:x => x, :t => t, :y => y)

11 end

Figure 3.7: Mock implementation of an intervention program transformation in
Gen. This (mock) implementation for intervention corresponds to Definition 2.1.3, taking
as input a model and an intervention_assignment and returning an intervened_model.
linear_intervened_scm shows the equivalent Gen program to the return value of
intervention(linear_scm, ones(n)).

3.2.3 Intervention Program Transformations

Thus far, I have showed how to compose generative models representing SCMs

in Gen to represent increasing layers of uncertainty, first over data in Figure 3.2

with linear_probabilistic_scm and then over probabilistic SCMs themselves in

Figure 3.4 with linear_bayesian_scm. However, these programs do not yet address

our interest in drawing causal conclusions from data. To do so, we must take advantage

of the intervention model transformation as described in Definition 2.1.3. Applying

this intervention to the SCM M in Equation 3.4, we obtain the intervened SCM M′ as

follows, where t is the intervention assignment:

xi = βuxui + εxi

ti = t

yi(t) = βtyt+ βxyxi + βuyui + εyi

(3.9)

46

1 @gen function linear_twin_probabilistic_scm(parameters::Dict{Symbol, Float64},

2 intervention_assignment::Array{Float64, 1},

3 n::Int64)

4

5 noise = @trace(noise_model(parameters, n))

6

7 confounders = @trace(confounder_model(parameters, n))

8

9 linear_intervened_scm = intervention(linear_scm, intervention_assignment)

10

11 data = @trace(linear_scm(noise, confounders, weights), :factual)

12 data_cf = @trace(linear_intervened_scm(noise, confounders, weights), :counterfactual)

13

14 return data[:y], data_cf[:y]

15 end

Figure 3.8: Implementation of the linear twin world probabilistic struc-
tural causal model in Gen. Similar to linear_probabilistic_scm in Figure 3.5,
linear_twin_probabilistic_scm extends the linear_scm with a distribution over ex-
ogenous noise and latent confounders. However, using our intervention program transforma-
tion, linear_twin_probabilistic_scm induces a distribution over factual, e.g. data, and
counterfactual, e.g. data_cf, data.

To implement this transformation, we need an implementation of intervention

shown in Figure 3.7 that takes as input a model and an intervention_assignment,

and returns an intervened_model with an intervention applied according to Defini-

tion 2.1.3. I defer until Chapter 7 an in-depth discussion of how to implement such an

intervention transformation in a way that is: (i) model-agnostic; (ii) accommodates

Bayesian nonparametric approaches like GPs; (iii) covers the full space of Gen pro-

grams (with arbitrary control flow); and (iv) requires minimal introspection into the

intervened model. That said, in Chapter 5, I show a partial solution in Figure 5.3

implemented using syntax transformations of symbolic code objects in a restricted

domain-specific modeling language I call “MiniStan”.

Suspending disbelief about a general implementation for now, imagine that we ap-

plied an implementation of intervention in to linear_scm with intervention_assignment

given by a length n vector of ones. This program transformation would return a

Gen program equivalent to linear_intervened_scm shown in Figure 3.7, which, not

surprisingly, closely resembles the structural equations shown in Equation 3.9.

47

1 @gen function SATE(y::Array{Float64, 1}, y_cf::Array{Float64, 1})

2 return sum(y - y_cf)/length(y)

3 end

1 @gen function linear_queried_probabilistic_scm(parameters::Dict{Symbol, Float64},

2 intervention_assignment::Array{Float64, 1},

3 n::Int64)

4

5 y, y_cf = @trace(linear_twin_probabilistic_scm(parameters, intervention_assignment, n))

6 return answer = SATE(y, y_cf)

7 end

Figure 3.9: Implementation of the linear queried probabilistic structural
causal model in Gen. Using our probabilistic program over factual and counterfac-
tual data, linear_twin_probabilistic_scm, linear_queried_probabilistic_scm in-
duces a distribution over answers to our causal query by straightforwardly applying
linear_twin_probabilistic_scm’s outputs to the deterministic query function, here, SATE.
See Table 3.1 for a description of some other common queries.

3.2.4 Causal Queries

We need one final ingredient to tell a complete story of causal inference reducing to

probabilistic probabilistic inference: our causal query, Q. As discussed in Section 3.1,

Q is a function of factual and counterfactual endogenous variables, codifying causal

questions of interest. In this linear example, we consider the sample average treatment

effect (SATE), Q =
∑n

i=1(yi(t) − yi)/n. As the name implies, answering a SATE

query is akin to answering the English-language question “On average over the

individuals I’ve measured, how much greater would their numerical outcomes have

been if their treatment was forced to be t, rather than the treatment they actually

received naturally?” This query is fairly straightforward. However, the space of causal

queries is vast. While I don’t explore it in detail in this thesis, Table 3.1 shows a

small survey of standard causal queries in the literature, and how they translate to

functions, Q8.

8I have omitted some of the more complex queries, such as the nested counterfactual queries
required for mediation analysis [98] or for actual causal queries [51], i.e. queries of the form “why did
X event happen?”. This omission is a consequence of the decision to simplify the definition of SCMs
for ease of exposition and clarity in Section 2.1 to only consider fixed interventions on treatment
variables, and not because of any inherent limitations of the Bayesian structural approach.

48

Query Treatment Q(V,V(t1), ...,V(tk))

Average Treatment Effect (ATE) Continuous limn→∞
∑n

i=1(yi(t)− yi)/n

Average Treatment Effect (ATE) Binary limn→∞
∑n

i=1(yi(1)− yi(0))/n

Average Treatment Effect on the
Treated (ATT)

Binary limn→∞
∑

i∈It(yi(1)− yi(0))/||It||,
where It = {i ∈ [[n]]|ti = 1}

Average Treatment Effect on the
Untreated (ATU)

Binary limn→∞
∑

i∈It(yi(1)− yi(0))/||It||,
where It = {i ∈ [[n]]|ti = 0}

Conditional Average Treatment Ef-
fect (CATE)

Continuous limn→∞
∑

i∈Ix(yi(t) − yi)/||Ix||,
where Ix = {i ∈ [[n]]|xi = x}

Conditional Average Treatment Ef-
fect (CATE)

Binary limn→∞
∑

i∈Ix(yi(1)−yi(0))/||Ix||,
where Ix = {i ∈ [[n]]|xi = x}

Individual Treatment Effect (ITE) Continuous yi(t)− yi, for some i ∈ [[n]]

Individual Treatment Effect (ITE) Binary yi(1)− yi(0), for some i ∈ [[n]]

Table 3.1: Common causal queries. Here I show a collection of (some) common causal
queries used throughout the causal inference literature. All of these “average” queries can be
converted to “sample” variants by omitting the limn→∞. For example, the sample average
treatment effect is defined as

∑n
i=1(yi(t)− yi)/n for continuous treatment, where n is the

number of observed instances. Additionally, these queries can trivially be composed to
form new queries, e.g. conditional average treatment effect on the treated. I have omitted
these combinations from the table for brevity, as they are intuitive and straightforward
to construct. Finally, I only define the conditional average treatment effect for discrete
covariates, as conditioning on a continuous variable requires significant care.

Again, we can straightforwardly implement the sample average treatment effect as

an ordinary Julia function, and then compose it with our linear_twin_probabilistic_scm

to construct a new expanded probabilistic program. At this point this story of composi-

tion should not be particularly surprising; we continue to implement model composition

as ordinary function calls, with special @trace constructs when the callee itself includes

traced random variables. This simple wrapping can be seen in Figure 3.9.

With this twin world construction using our intervention program transformation

and our new causal query, we can now visualize the full end-to-end mapping from

structural causal models to causal queries. As shown in Figure 3.10, a single choice

of probabilistic SCM (top left) induces a counterfactual SCM (bottom left) via the

intervention transformation. The combination of these two structural causal models

49

induce a distribution over factual data, V, and counterfactual data, V(t), which then

propagate to a distribution over causal queries, Q. As Figure 3.10 shows, if we knew

the structural causal model exactly, we would therefore know the answer to our query9.

3.2.5 Composing Intervention Program Transformations with Hierarchi-

cal Priors over Probabilistic SCMs

Now that we have a probabilistic program that maps the entire path from prob-

abilistic structural causal model parameters to answers to our causal query, we

can again extend the model to include priors in a similar way to how we imple-

mented linear_bayesian_scm in Figure 3.4. Figure 3.11 shows exactly that ex-

tension, using linear_queried_probabilistic_scm as a sub-component. Just as

SCM Factual Data

SCM Counterfactual Data
Intervention

Simulation

Simulation

Causal Query (Q)

Figure 3.10: Visual representation propagating a single probabilistic structural
causal model to a causal query. Just as in Figure 3.3, uncertainty over simulated data
comes exclusively from exogenous noise and latent confounders, and not uncertainty over
structural functions. In the limit of infinite data, fully determined SCMs often induce fully
determined answers to causal queries, as shown here. However, this is not the case for finite
data, or for some queries even asymptotically.

9This is true for this model because we have assumed additive noise. With less stringent
assumptions, unique probabilistic structural causal models may still result in uncertainty over Q.

50

1 @gen function linear_queried_bayesian_scm(parameters_prior::Dict{Symbol, Distribution},

2 intervention_assignment::Float64,

3 n::Int64)

4

5 parameters = Dict()

6

7 for (variable, prior) in parameters_prior

8 parameters[variable] = @trace(prior, variable)

9 end

10

11 return answer = @trace(linear_queried_probabilistic_scm(parameters, intervention_assignment, n))

12 end

Figure 3.11: Implementation of the linear queried Bayesian structural
causal model in Gen. Identical to how linear_bayesian_scm extended
linear_probabilsitic_scm with a prior distribution over parameters representing
broader uncertainty, so too does linear_queried_bayesian_scm shown here extend
linear_queried_probabilistic_scm. This program represents the joint distribution of
parameters, factual and counterfactual data, and answers to our causal query.

in linear_bayesian_scm, extending a model that takes a single set of parameters

to a model that instead places uncertainty over those parameters is exceptionally

straightforward, we simple sample parameters from some collection of priors and

then call linear_queried_probabilistic_scm with the sampled parameters. The

only difference is that in linear_queried_bayesian_scm the nested model we call

includes a distribution over answers to the causal query we are interested in, not just

factual data as in probabilistic_linear_scm.

Figure 3.12 shows a visual representation of how placing a prior distribution

on probabilistic structural causal models propagates through to uncertainty over

intervened probabilistic structural causal models, factual and counterfactual data, and

finally our causal query. While somewhat cartoonish, Figure 3.12 tells a realistic story

for a reasonable prior; before seeing any data we should have broad uncertainty over

how an intervention will influence the outcomes we are interested in.

Now that we have a probabilistic program representing a joint distribution over all

of the quantities we are interested in, we can condition that distribution on observed

factual data to induce a posterior distribution over causal effects, p(Q|V). Figure 3.13

shows a visual representation of exactly that posterior distribution. Here, our updated

51

SCM Factual Data

SCM Counterfactual Data
Intervention

Simulation

Simulation

Causal Query (Q)

Figure 3.12: Visual representation propagating a distribution over probabilistic
structural causal model to a distribution over causal queries. This represents the
joint distribution over probabilistic structural causal models, factual and counterfactual
data, and the resulting queries in the Bayesian structural approach. Before seeing any data
our uncertain belief about the space of probabilistic structural causal models propagates to
broad uncertainty over answers to causal queries.

belief about the space of probabilistic structural causal models propagates to the the

space of intervened probabilistic structural causal models, counterfactual data, and

finally the causal query itself.

In this particularly simple linear example, it turns out that the sample average

treatment effect can be entirely summarized by the linear weight between treatment

and outcome, βty, as can be seen by the following simple derivation10:

10Often econometrics textbooks will refer to these linear weights as the “causal effect” parameter.
I avoid this terminology because it confuses the derivation of a mathematical fact (that for this
particular collection of simple assumptions the effect is fully determined by βty) with a definition
of an effect. In general, causal effects will not be reducible to a single parameter. As we’ll see in
subsequent chapters, this is not a problem, as we can probabilistically impute latent counterfactual
outcomes and estimate resulting causal effects directly.

52

SCM Factual Data

SCM Counterfactual Data
Intervention

Simulation

Inference Causal Query (Q)

Figure 3.13: Visual representation of the posterior distribution of probabilistic
structural causal models given data, and the resulting distribution over causal
queries. Conditioning a Bayesian SCM on observations, V, induces a posterior distribution
over probabilistic SCMs, which is then propagated to a distribution over interventional
SCMs, counterfactual data, and finally causal queries. Here, multiple causal explanations
are consistent with observed data. Therefore, the posterior distribution p(Q|V) shown on
the right does not collapse even as n→∞.

Q(V,V(t)) :=
n∑
i=1

(y(t)i − yi)/n

=
n∑
i=1

((βtyt+���βxyxi +���βuyui +��εyi
)− (βtyti +���βxyxi +�

��βuyui +��εyi
))/n

= βty

n∑
i=1

(t− ti)/n

(3.10)

On the one hand, this is a convenient result; even though there are many parameters

that are needed to uniquely specify a probabilistic structural causal model, we only

need a single one to answer the causal question we are interested in. However, as

discussed in Section 3.2.2, the presence of the latent confounder u makes it challenging

to estimate even just βty, even as n → ∞. This is not particularly surprising: any

observed dependence could be explained by either a strong effect of treatment on

53

SCM Factual Data

SCM Counterfactual Data
Intervention

Simulation

Simulation

Causal Query (Q)

Figure 3.14: Visual representation propagating a distribution over probabilistic
structural causal model to a distribution over causal queries with stronger causal
assumptions. Adding an additional assumption to our Bayesian structural causal model
materializes in a change to our prior distribution over probabilistic structural causal models.
In this example, we place a dirac-delta prior on βuy = 0.

outcome, or a strong latent confounder. However, not all latent confounders cause

these kinds of problems. To see this, let’s explore what happens when we make slightly

stronger assumptions.

3.2.6 Stronger Causal Assumptions as Priors

In the proceeding sections we have seen how the assumptions expressed as priors

imply that our causal query of interest, the sample average treatment effect, can not

be unambiguously estimated from data. However, what if instead we were willing to

make slightly stronger assumptions? Specifically, what happens if we assume that

the confounder does not have an effect on the outcome, and that it only affects the

treatment and covariates. In other words, we place a dirac-delta prior on βuy = 0,

rather than any arbitrary prior over the reals.

These stronger assumptions expressed in terms of priors can be seen visually in

Figure 3.14. All that has changed from the previous collection of assumptions reflected

54

in Figure 3.12 is that the space of probabilistic structural causal models is smaller;

all of the transformations are left unchanged. Just as in Figure 3.12, before seeing

any data we are uncertain about the causal effect. However, this simple restriction

combined with observational data is enough to yield unique causal conclusions as

n→∞.

Here, setting βuy to 0 in the system of equations in Equation 3.8 does not result

in a unique solution to all of the parameters in θ, as there are still more parameters

than there are equations. However, recall from Equation 3.10 that we don’t need

to estimate all of the parameters in θ to answer our causal query; we only need to

estimate βty. In fact, using a computer algebra system, we can see that the modified

collection of Equations in 3.8 results in the following unique solution:

βty =
cov(t,y)cov(x,x)− cov(x, t)cov(x,y)

cov(t, t)cov(x,x)− cov(x, t)2
(3.11)

As each of these covariance terms over observable random variables have a unique

maximum likelihood asymptotically, so too does βty. By the Bernstein von-Mises the-

orem [34] p(βty|V), and by extension p(Q|V), thus converges to that unique maximum

likelihood as n→∞. Putting this result in context, we can see that strengthening

our assumptions about how latent confounders relate to observable variables results in

qualitatively different conclusions about our ability to answer causal questions. Before,

no amount of data could rescue us from ambiguity, and now given enough data we

can answer the question of interest.

Figures 3.14 and 3.15 shows a visual representation of how these stronger assump-

tions again propagate through to the distribution over causal queries. In Figure 3.14,

even though we have concentrated our prior distribution over a smaller region of

probabilistic structural causal models before seeing any data our uncertainty over

answers to the causal query remain high. However, Figure 3.15 shows how these

55

SCM Factual Data

SCM Counterfactual Data
Intervention

Simulation

Causal Query (Q)Inference

Figure 3.15: Visual representation of the posterior distribution of probabilistic
structural causal models given data, and the resulting distribution over causal
queries with stronger causal assumptions. By restricting the space of probabilis-
tic structural causal models a-priori, conditioning on data not leads to asymptotically
unambiguous causal conclusions.

stronger assumptions combined with data yield significantly less ambiguous causal

conclusions. In other words, stronger causal assumptions supplement data to yield

strong causal conclusions, but both are necessary.

Reflecting these additional assumptions in our Gen implementations is straightfor-

ward, we simply change the prior distribution over βuy in weights_prior passed as

an argument to linear_queried_bayesian_scm in Figure 3.1111.

While the analysis shown in this section is unique to the specific linear Gaussian

set of assumptions, it turns out that some of the conclusions are much more broad.

In fact, when translated into a causal graphical model the additional assumption

that βuy = 0 corresponds exactly to the causal graph shown in Figure 2.1. As we

discussed in Section 2.1, Pearl’s graphical theory already tells us that p(y(t)) can

11Not all representations of stronger causal assumptions will have such a simple no-code change,
as we’ll see in the Gen code representations of the quasi-experimental designs from Section 2.1.

56

be unambiguously estimated from data without any parametric assumptions, so it

shouldn’t be surprising that that conclusions holds for our particular linear case.

However, the restriction on whether u influences y is just one kind of assumption we

may want to add to enable causal inferences from data.

3.2.7 Quasi-Experimental Designs

As we discussed in Section 2.1, there are other practical assumptions that can’t

be expressed by graph structure alone, but that can be represented as priors over

probabilistic structural causal models. To see that, let’s revisit our three quasi-

experimental designs from Section 2.1.

Regression Discontinuity Design. Figure 3.16 shows the Gen code for imple-

menting a simple version of the regression discontinuity design from Section 2.1

with a similar parameterization to our linear model throughout this chapter. To

implement this model we simple remove the latent confounder u and change the

assignment mechanism in line 7 of linear_rdd_scm from its original linear function

to the expression t = x .> 0., which is an array representation of the expression

if (x > 0) 1 else 0 end. How we add priors, apply an intervention, and propa-

gate counterfactual outcomes through to our causal query is conceptually identical

to the linear example, with some minor syntax changes to account for the difference

in arguments between the two models. The important lesson here is that adding

new assumptions, even those outside of the realm of causal graphical models, can be

remarkably straightforward using the Bayesian structural approach. In Chapter 6,

I unpack the implications of the regression discontinuity assumptions with both lin-

ear parameterizations like the ones shown here and when using a finite dimensional

Gaussian process prior.

57

1 @gen function linear_rdd_scm(noise::Array{Float64, 1},

2 confounders::Array{Float64, 1},

3 parameters::Dict{Symbol, Float64})

4

5 x = noise[:x]

6 # Array representation of t_i = 1 if x_i > 0., else t_i = 0

7 t = x .> 0.

8 y = parameters[:beta_ty] * t + parameters[:beta_xy] * x + eps_y

9

10 return data = Dict(:x => x, :t => t, :y => y)

11 end

Figure 3.16: Implementation of the regression discontinuity design in Gen. To
implement the regression discontinuity design we remove confounders, u, and modify the
assignment mechanism for treatment, t. Despite its simplicity, regression discontinuity
designs yield remarkably different conclusions to what the corresponding graphical model
would lead one to believe.

1 @gen function linear_probabilistic_slc_scm(parameters::Dict{Symbol, Float64}, n_i::Int64, n_o::Int64)

2

3 noise = @trace(noise_model(parameters, n_o * n_i))

4

5 confounders = @trace(confounder_model(parameters, n_o))

6

7 # Tile each length n_o vector of confounders to a vector of length n_o * n_i

8 tiled_confounders = Dict()

9

10 for (confounder, values) in confounders

11 tiled_confounders[confounder] = repeat(values, inner=n_i)

12 end

13

14 return linear_scm(noise, tiled_confounders, weights)

15 end

Figure 3.17: Implementation of the structured latent confounder design
in Gen. To implement the structured latent confounder model, we modify
linear_probabilistic_scm to sample n_o instances of latent confounders, and then tile
those confounders (lines 8-12) so that they are shared amongst multiple instances of observed
covariates, treatment, and outcome. Note that doing so only requires modifying how the
confounder model is called, and can be applied agnostically to any user-specified choice of
confounder model.

Structured Latent Confounding. Figure 3.17 shows the Gen code for implement-

ing a simple version of the structured latent confounding example from Section 2.1,

again with a similar parameterization to our linear model throughout this chapter.

Recall that the structured latent confounding assumption is that the same object-level

latent confounder is shared between multiple instances. Implementing this change is

again remarkably straightforward; we sample a length n_o vector of latent confounders

58

u_o, and then tile those samples to match the number of data instances n_i * n_o.

For example, if the confounder_model samples a vector [0., 1.] and n_i=3, then

line 11 will produce a vector [0., 0., 0., 1., 1., 1.]. Again, an extremely minor

change in code has remarkable implications with respect to what causal conclusions

we can draw from data. As I show in Section 4.4 of Chapter 4, it turns out that this

assumption leads to identifiability for the linear case. In Chapter 4 I expand on this

example with rich Gaussian process priors over structural functions.

Instrumental Variable Design. Unlike the regression discontinuity design and

the structured latent confounding example, but similar to our modified model in

Section 3.2.6, implementing the instrumental variable designs model does not require

any changes to our original linear structural causal model programs. Instead, the

exclusion and as-if random assumptions described in Chapter 2 can be implemented by

modifying the choice of priors over weight parameters in the linear model. Specifically,

the exclusion restriction corresponds to assuming a dirac-delta prior on βxy = 0, i.e.

there is no effect from the instrument, x, to the outcome, y, except the effect mediated

through treatment, t. Similarly, the as-if random restriction corresponds to assuming

a dirac-delta prior on βux = 0, i.e. there is no effect of the latent confounder, u, on

the instrument, x.

While these instrumental variable design assumptions look identical to the stronger

assumptions in Section 3.2.6, they only enable identifiability because of the specific

parameterization we chose for our original linear structural causal model. If we had

instead chosen a model with non-linear functions and non-additive exogenous noise,

the exclusion and as-if random conditions would be insufficient. This is not true of the

assumptions in Section 3.2.6; any choice of parameterization would lead to identical

identification results.

59

3.2.8 A Note on Traced Randomness and Reparameterization

The code expressions in linear_scm closely resemble the mathematical description

of structural causal models generally, as well as the particular choice of parameter-

ization in Equation 3.4. However, this choice of representation is not particularly

convenient for downstream probabilistic inference. In Gen, and most probabilistic

programming languages, intermediate computations necessary for implementing down-

stream inference algorithms can only occur at special traced addresses, denoted in

Gen using the custom @trace Julia macro. For example, Gen automates incremental

resampling, likelihoods, and likelihood gradients at traced addresses. In other words,

if we want to condition on data, such as x, we will need x in the code to be assigned

according to @trace(some_dist, :x => i), rather than the current version which

assigns x using ordinary (untraced) Julia code. To address this practical concern we

can rewrite linear_twin_probabilistic_scm as shown in Figure 3.18.

This reparameterization combines the distribution over noise variables with the

choice of structural function, placing all @trace assignments exactly where we will

eventually condition on data. In other words, here we had to manually marginalize

out exogenous noise, X, having our code instead directly reflect the pushforward dis-

tribution, p(V|U,F). In this thesis I assume that this pushforward reparameterization,

or change of variables, is always tractable. In this linear Gaussian example, we rely

on the simple fact that for the composition of equations yi = βti + αui + γεyi and

εyi ∼ N (0, 1), the conditional density p(yi|fy, ui) is given by N (yi; βti + αui, γ).

While the implementations for the remaining chapters rely on a manual imple-

mentation of this pushforward, similar to Figure 3.18, in Chapter 7 I discuss some

plausible approaches to automating these transformations.

60

1 @gen function linear_twin_probabilistic_scm(parameters::Dict{Symbol, Float64},

2 intervention_assignment::Array{Float64, 1},

3 n::Int64)

4

5 u = @trace(confounder_model)[:u]

6

7 x, t, y = [], [], []

8

9 for i in 1:n

10 mean_x = parameters[:beta_ux] * u[i]

11 x[i] = @trace(Normal(mean_x, parameters[:var_x]), :x => i)

12

13 mean_t = parameters[:beta_xt] * x[i] + parameters[:beta_ux] * u[i]

14 t[i] = @trace(Normal(mean_t, parameters[:var_t]), :t => i)

15

16 mean_y = parameters[:beta_ty] * t[i] + parameters[:beta_xy] * x[i] + parameters[:beta_uy] * u[i]

17 y[i] = @trace(Normal(mean_y, parameters[:var_y]), :y => i)

18 end

19

20 y_cf = y + parameters[:beta_ty] * (intervention_assignment - t)

21

22 data = Dict(:x => x, :t => t, :y => y)

23 data_cf = Dict(:x => x, :t => intervention_assignment, :y => y_cf)

24

25 return data, data_cf

Figure 3.18: Re-implimentation of linear_twin_probabilistic_scm from Figure 3.8
to permit conditioning on x, t,y. Unlike the implementation in Figure 3.8, which faith-
fully resembled the mathematical description of structural causal models, this implementation
assigns all observed variables, x, t, and y using Gen’s @trace construct for tracking random
choices. In doing so, we enable conditioning on x, t, and y, rather than on their corresponding
noise variables.

3.3 Choosing a Formalism for Causal Inference: Strengths

and Limitations of the Bayesian Approach

For forward-looking practitioners, existing alternatives to the Bayesian structural

approach presented in this thesis offer a somewhat unsatisfying choice: use Pearl’s

graphical formalisms and ignore any non-graphical assumptions or hope that your

particular problem fits within a small collection of well-studied templates, such as

the regression discontinuity or regression discontinuity design quasi-experimental

designs. This thesis aims to be more aspirational, providing an alternative formalism

in which causal assumptions can be expressed in terms of computational structures

without being restricted to graph structure alone. However, doing so is not without

consequence. In this section, I enumerate some of these consequences, and describe

61

circumstances in which one should prefer existing approaches. For example, some

limitations of the Bayesian structural approach are the following:

First, the Bayesian structural approach requires explicit priors on structural

functions, confounder distributions, and exogenous noise distribution, whereas existing

approaches may yield causal conclusions with weaker and less committal descriptions

of uncertainty. For example, in this chapter we came to interesting conclusions

about linear structural causal models and their variants, but these analyses were not

conclusive about any other parametric family of models. If we were to instead swap

out these assumptions for a more expressive prior over polynomial as opposed to linear

functions we might yield yet different conclusions. The do-calculus however, would

tell us that the graphical structure in Figure 2.1 will always lead to identifiability,

regardless of structural function, noise distribution, etc. Instead, we would like a

formalism that allows us to restrict functional form when necessary, such as in this

linear instrumental variable design, but leave structural functions flexible when not.

In the following chapters, I will show how using the Bayesian structural approach

with Bayesian nonparametric priors over structural functions allows us to do just that.

However, these nonparameteric priors still implicitly posit some assumptions about

smoothness and the family of noise distributions, e.g. we assume Gaussian noise in

subsequent chapters. In Chapter 7, I discuss some opportunities for future work to

address these remaining limitations of the Bayesian structural approach.

Second, reducing causal inference to probabilistic inference does not fully solve the

problem of causal inference, as exact probabilistic inference in even discrete models

is a NP-hard computational problem. Therefore, probabilistic inference often turns

to approximation methods, such as the variants of importance sampling I discuss in

Section 2. For the most part, I consider this to be a strength, as it allows us to bring

to bear advances in probabilistic inference for causal inference problems. However,

approximate inference is a notoriously hard practical problem, and errors are often

62

difficult to diagnose. While there is an active body of research on improving the

practice of Bayesian inference workflows [46], it is far from complete.

With multiple formalisms in hand, each of which with limitations, we are left with

the natural and obvious question, “when should we prefer one formalism over another?”

The somewhat pithy answer is that one should use the Bayesian structural approach

when one’s assumptions are not representable simply as the structure of a directed

acyclic graph or not already covered by the small library of standard econometric

designs. Somewhat less pithily, the Bayesian approach presented in this thesis provides

both expressiveness and automation to causal reasoning, two characteristics that will

become increasingly important as the scale and complexity of application domains

continues to increase. For example, high-energy particle physics simulation models

are clearly not representable as directed acyclic graphs, nor are they covered by

any econometric methods, and yet scientists wish to use these simulation models as

representations of causal knowledge in combination with data to yield novel causal

conclusions. The Bayesian structural approach is perfectly compatible with these

kinds of complex simulation models.

3.4 Related Work

The work in this thesis is certainly not the first to propose being Bayesian about

causal inference; Rubin himself espoused the Bayesian approach to causal inference

as far back as 1978 [112]. In fact, many recent papers in the modern literature

on machine learning for causal inference could be equivalently framed as Bayesian

structural causal inference as we do here, i.e. placing priors over probabilistic structural

causal models [52, 78, 92, 128]. However, what these works do not address, and

what we try to emphasize in this chapter, is the role of computational concepts of

composition, abstraction, modularity, and reuse in representing and reasoning about

causal assumptions expressed as probabilistic programs. As we saw in this chapter and

63

as we’ll continue to see in the remainder of this thesis, thinking of priors over structural

causal models as code makes advanced applications of Bayesian nonparametric causal

inference almost trivial.

Our work is also not alone in identifying the central role of probabilistic program-

ming for causal reasoning and inference. For example, Omega [124] is a probabilistic

programming language with first-class syntax for intervention. Where these contri-

butions focus on the programming languages considerations to make interventions

coherent and sound, the contributions in this thesis focuses on the practice of program-

ming using these constructs to implement advanced variants of common causal designs

that aren’t supported by graph based methods. Other probabilistic programming

languages have implemented interventions in various ways, including Pyro [16] and

MultiVerse [99], although (unlike Omega) these languages do not provide a formal

semantics.

3.5 Conclusion

In this chapter I illustrated the Bayesian structural approach to causal inference

with a simple example of a linear model, and then extended that model to reflect

assumptions necessary for common quasi-experimental designs. In doing so, I showed

how representing models as code allows us to implement fairly diverse causal assump-

tions succinctly by changing only a few assignment statements. However, what should

we do if we want to go beyond these simple linear examples, including Bayesian

nonparametric priors over structural functions, or with to reason using experimental

data? In the remainder of this thesis, I provide partial answers to these questions.

64

CHAPTER 4

HIERARCHICAL CAUSAL INFERENCE USING
GAUSSIAN PROCESSES WITH STRUCTURED LATENT

CONFOUNDERS

Multiple causal models can be observationally equivalent, i.e., they induce the

same likelihoods for observed data, while producing different estimates of the effects

of a particular intervention of interest. Distinguishing between causal models, and

estimating the effects of interventions, typically requires untestable assumptions about

causal structure.

One such common assumption is unconfoundedness [61], i.e., that there exist no

latent variables that influence both treatment and outcome. This assumption enables

the unique identification of interventional distributions from the joint distribution

over observed variables [97] and reduces causal inference to probabilistic estimation.

Unfortunately, assuming unconfoundedness is often unreasonable in real observational

settings [117]. However, it may be more reasonable to assume unconfoundedness for a

subset of data instances that are known to share a common structure.

For example, suppose a local school board proposes a new policy of holding back

poor performing kindergarten students [57, 58] with the intention of increasing their

future academic performance. To estimate the effect of this policy change, they gather

data on student retention and education outcomes from a national database. Here,

the unconfoundedness assumption is not justified, as the schools’ retention policies are

likely to be influenced by local economic conditions, which may also influence student

outcomes through other causal mechanisms, such as the availability of educational

resources. However, the assumption may be justified when considering only students

65

Symbol Description Entity
Uo,: Confounders Object
Xi,: Covariates Instance
ti Treatment Instance
yi Outcome Instance

(a) Variable descriptions. (b) Causal graph for GP-SLC.

fu ∼ GP (0, ku) fx ∼ GP (0, kx)

ft ∼ GP (0, kt) fy ∼ GP (0, ky)

Uo,j = fu(εuo,j)

Xi,l = fxl (uo=Pa(i), εxi,l)

ti = ft(Uo=Pa(i),:,Xi,:, εti)

yi = fy(Uo=Pa(i),:,Xi,:, ti, εyi)

(c) Prior and causal functions
for GP-SLC.

u1

t1 y1

x1

t2 y2

x2

t3 y3

x3

u3

t5 y5

x5

t6 y6

x6

u4

t7 y7

x7

t8 y8

x8

u2

t4 y4

x4

...

(d) Example grounding of the
structural causal model in (b)
and (c). Latent confounders
are shared within objects.

(e) Treatment, covariates,
and inferred object-level
confounders for instances in
(d). Color = o. Size = Xi,:.

(f) Kernel covariance matrix
over observed (yi) and coun-
terfactual (y1,t∗) outcomes for
instances in (e). Dark > light.

Figure 4.1: Model summary. GP-SLC (a-c) is a Gaussian process model for causal
inference in settings where object-level latent confounders, U, influence instance-level
observed covariates, X, treatment, t, and outcome, y, random variables. For a given
grounding (d), the outcome kernel function, ky, applied to treatment, covariates, and inferred
confounders (e) induces the covariance between observed and counterfactual outcomes (f).
Instances belonging to the same object always have the same inferred latent Uo,:. In this
example, the counterfactual outcome y1(t∗) has high covariance with factual outcomes y1

and y2. y1(t∗) has low, but non-zero, covariance with y4 because UPa(1),: 6≈ UPa(4),:, despite
the fact that t∗ ≈ t4 and X1,: ≈ X4,:.

within a particular school, as this subset of students are similarly influenced by local

economic conditions. In other words, statistical relationships within a school are less

likely to be biased by latent confounders than are statistical relationships across the

entire population.

In this chapter, I present Gaussian processes with structured latent confounders

(GP-SLC), a novel Bayesian nonparametric approach to causal inference with hier-

archically structured observational data. The key innovation behind GP-SLC is to

place Gaussian process priors over functions in a hierarchical structural causal model,

66

bringing the flexibility of Gaussian process models to a wide variety of practical causal

inference techniques. GP-SLC naturally handles binary and continuous treatments

and requires minimal assumptions about functional relationships between latent con-

founders, observed covariates, treatment, and outcomes. See Figure 4.1 for an overview

on how GP-SLC estimates counterfactual outcomes from data.

4.1 Background

4.1.1 Object Conditioning

Recent work has studied how the analytical procedure of partitioning data based

on a known object hierarchy (e.g. students belonging to the same school) relates to

the syntax and semantics of causal graphical models [63]. This work concludes that

conditioning on the identify of objects (referred to as object conditioning) is distinct

from existing notions of conditioning on the values of variables. Importantly, object

conditioning constrains a set of latent variables to be identical across a set of instances,

but does not constrain the particular value of those variables. Furthermore, the

statistical implications of object conditioning differ from those of variable conditioning

in that object conditioning does not induce collider bias when variables on the object

are caused jointly by treatment and outcome.

Partitioning hierarchical data in this way is the key analytical procedure for a

variety of practical causal inference techniques, including within-subjects designs [77],

difference-in-differences designs [117], longitudinal studies [76], twin studies [20], and

multi-level-modeling [45]. As in the student retention example, these techniques take

advantage of background knowledge about which instances (students) belong to which

objects (schools) to mitigate the biasing effects of latent confounders. However, these

methods typically rely on simple parametric assumptions, such as linear functional

dependencies. These parametric assumptions are often unjustified in real domains,

leading to poor estimates of causal effect.

67

We employ the idea of object conditioning directly in the GP-SLC model, con-

straining the joint distribution over individuals’ latent confounders instead of treating

object identity as a covariate in and of itself. By explicitly performing inference over

object-level latent confounders, GP-SLC’s estimates of counterfactual outcomes in one

object are informed by observed outcomes in another. Sharing information between

objects in this way is particularly valuable when each object contains few observed

instances, as we show in Section 4.5.

4.1.2 Causal Inference with Latent Confounders

Latent confounders—unobserved variables that cause both treatment and outcome—

bias estimates of treatment effect. However, this bias can be adjusted for with addi-

tional background knowledge, such as that a latent confounder influences an observed

proxy variable [70, 84]. Similarly, recent work indicates that latent confounders can

be adjusted for if they cause multiple candidate treatment variables [132].

GP-SLC is similar to these approaches, in that it leverages additional background

knowledge to adjust for latent confounders. However, unlike prior work using generative

models for causal inference with latent confounders, it leverages known hierarchical

structure to identify causal effects.

4.1.3 Gaussian Process Models

As discussed in Chapter 2, Gaussian process models are a flexible technique

for probabilistic modeling. Specifically, a Gaussian process is a distribution over

deterministic functions, y = f(x), f ∼ GP (m, k), which is fully specified by its

mean function, m(x) and covariance function, k(x,x′), which we will refer to as the

kernel function [103]. By definition, any finite collection of draws from a Gaussian

process prior are jointly Gaussian distributed, y ∼ N (µ,Σ), where µi = m(xi) and

Σi,i′ = k(xi, xi′). In this chapter, we denote such covariance matrices as K(X,X). It

is common to set the prior mean function to m(x) = 0, which we do in GP-SLC.

68

4.2 Gaussian Processes with Structured Latent Confounders

Consider the common scenario where there are no object-level latent confounders

(U ∈ Rno×nu) that influence ni instances of observed treatment (t ∈ Rni), covariates

(X ∈ Rni×nx), and outcomes (y ∈ Rni). We can describe this scenario as a structural

causal model, where the particular functions relating U, X, t, and y are given by the

following for all o ∈ [[no]], j ∈ [[nu]], i ∈ [[ni]], l ∈ [[nx]]:

Uo,j = fuj(εuo,j)

Xi,l = fxl(uo=Pa(i), εxi,l)

ti = ft(Uo=Pa(i),:,Xi,:, εti)

yi = fy(Uo=Pa(i),:,Xi,:, ti, εyi)

(4.1)

If all instances belong to the same object (no = 1) the structural causal model in

Equation 4.1 reduces to the standard propositional case and the latent U will not bias

estimated counterfactual outcomes. However, if we wish to estimate counterfactual

outcomes using instances from multiple objects (ni > no > 1), U’s influence on t and

y would appear to render counterfactual queries nonparametrically unidentifiable [97].

However, the fact that the confounding variable is shared between multiple observed

instances imposes additional restrictions on the structural causal model, i.e. multiple

instances of X, t, and y are functions of the same confounder instances. Rather than

be fully nonparametric, GP-SLC instead places a Gaussian process prior over each

function in the structural causal model in Equation 4.1, with kernel functions kx, kt,

and ky respectively as follows:

fxk ∼ GP (0, kxk) ft ∼ GP (0, kt) fy ∼ GP (0, ky). (4.2)

The particular choice of each kernel function plays an important role in the prior

over functions, and by extension the conditional distribution over counterfactual

69

outcomes. We use a radial basis function (RBF) kernel with automatic relevance

determination (ARD) [87] and additive Gaussian exogenous noise for each Gaussian

process prior. Each kernel is parameterized by a set of kernel lengthscales, λ, scaling

factors, σ2, and exogenous noise variances σ2
ε . We assume ful is the identity function.

We refer to the noise-free component of each kernel function as k′, e.g. kt(xi, xi′) =

k′t(xi, xi′) + σ2
εyδi,i′ , where σ2

εy is the exogenous noise variance, δi,i′ is the Dirac-delta

function at i′ = i, and k′t is the ARD kernel. We omit kernel arguments for brevity,

e.g. k′y([Uo,:,Xi,:, ti], [Uo′,:,Xi′,:, ti′]) is represented as k′y(·, ·). Specifically, each kernel

is defined as follows, where o = Pa(i) and o′ = Pa(i′):

k′xl(·, ·) = σ2
xl

exp

[
−

nu∑
j=1

(Uo,j − Uo′,j)
2

λuxj,l

]

k′t(·, ·) = σ2
t exp

[
−

nu∑
j=1

(Uo,j − Uo′,j)
2

λutj
−

nx∑
l=1

(Xi,l − Xi′,l)
2

λxtl

]

k′y(·, ·) = σ2
y exp

[
−

nu∑
j=1

(Uo,j − Uo′,j)
2

λuyj
−

nx∑
l=1

(Xi,l − Xi′,l)
2

λxyl
− (ti − ti′)

2

λty

] (4.3)

where λ is a lengthscale hyperparameter and defined for each dimension of corre-

sponding variables. Here, each dimension of X is generated independently given U,

and k′xl refers to the kernel function for the lth dimension of x. Intuitively, each kernel

lengthscale determines the relative strength of influence of each variable’s structural

function arguments. For example, if λty >> λxy1 , the covariance between instances (or

counterfactuals) with similar treatments will be greater than the covariance between

instances with similar values of covariate the first covariate.

In addition to placing Gaussian process priors on the functions in the structural

causal model in Equation 4.1, we also place inverse-gamma priors, p(θ) = γ−1(θ;αθ, βθ)

on each θ ∈ Θ, where Θ is the set of all kernel lengthscales, scaling factors, and

70

Algorithm 1 Individual Treatment Effect Estimation

1: procedure ITEE(t∗,y, t,X)
2: parameters: αθ∈Θ, βθ∈Θ, prior hyperparameters; nOuter,nMH, nES inference compu-

tation budget; driftθ∈Θ, Random walk proposal variance
3: θ ∼ γ−1(αθ, βθ), ∀θ ∈ Θ . Kernel hyperparameter prior sample
4: Uo,j ∼ N (0, σ2

εuj
), ∀o ∈ [[no]],∀j ∈ [[nu]] . Confounder prior sample

5: for m = 1 to nOuter do
6: Θ← HyperparameterUpdate(...) . Algorithm 2
7: U← ConfounderUpdate(...) . Algorithm 3
8: Wi,: ← [ti,Xi,1, · · · ,Xi,nx ,Uo=pa(i),1, · · · ,Uo=pa(i),nu

],∀i ∈ [[ni]]
9: Wi,:,∗ ← [ti,∗,Xi,1, · · · ,Xi,nx ,Uo=pa(i),1, · · · ,Uo=pa(i),nu

], ∀i ∈ [[ni]]
10: µITE ← (K ′(W,W∗) - K ′(W,W))K(W,W)−1y
11: ITEt∗,m ∼ N (µITE,ΣITE) . See text for ΣITE

12: end for
13: return ITE

exogenous noise variances. In Section 4.3.1 we show how to perform approximate

posterior inference on Θ.

4.2.1 Conditional Density

As fy, ft, and fx are all drawn from Gaussian process priors, p(y|t,X,U,Θ),

p(t|X,U,Θ), and p(X:,l|U,Θ) are all multivariate Gaussian distributed with mean

zero and covariance given by their respective kernel covariance matrices. For example,

p(t|X,U,Θ) = N (t; 0,Kt), where Kt,i,i′ = kt([Uo,:,Xi,:], [Uo′,:,Xi′,:]). As Uo,j is

given by the identity function of independent exogenous Gaussian noise, p(Uo,j|Θ)

= N (Uo,j ; 0, σ2
εuj

). Therefore, the joint density is given by the following, which we use

in Algorithms 2 and 3:

p(y, t,X,U,Θ) = p(y|t,X,U,Θ)p(X|U,Θ)p(t|X,U,Θ)(
no∏
o=1

nu∏
j=1

p(Uo,j|Θ))p(Θ).

(4.4)

By placing Gaussian process priors over each function in the hierarchical structural

model, we encode our assumptions about which configurations of observed and latent

variables are reasonable a-priori. Using a radial basis function kernel, we assume

71

that if two objects have similar object-level latent confounders, they are likely to

induce similar distributions over observed covariates, treatment, and outcome. Placing

higher density on smooth structural causal functions in this way enables inference

over object-level confounders.

4.3 Estimating Treatment Effects

In this section we describe how to estimate the individual treatment effect, ITEi,t∗ =

yi(t∗) − yi, the difference between observed and counterfactual outcomes for the

ith instance. Standard aggregate measures of causal effect, such as the sample

average treatment effect, SATEt∗ = 1
ni

∑ni

i=1 ITEi,t∗ , can be derived from the individual

treatment effect. We use ITEt∗ to denote the vector of individual treatment effects

corresponding to the vector of counterfactuals y(t∗).

First, note that when exogenous noise is additive in fy, i.e fy(Uo=Pa(i),:,Xi,:, ti, εti) =

f ′y(Uo=Pa(i),:,Xi,:, ti) + g(εti), as in the GP-SLC model, individual treatment effect is

given by the difference between noise-free functions ITEi,t∗ = f ′y(Uo=Pa(i),:,Xi,:, ti,∗)−

f ′y(Uo=Pa(i),:,Xi,:, ti). We denote the outcome of these noise-free functions as y′i(t∗)

and y′i, and the vector of outcomes as y′(t∗) and y′ respectively.1 As U∪X blocks all

backdoor paths from t to y, we have that the distribution over individual treatment

effects is given by the following expression [97]:

p(ITEt∗|y, t,X) = p(y′(t∗)− y′|y, t,X)

=

∫
p(y′(t∗)− y′|y, t,X,U,Θ)p(U,Θ|y, t,X)dUdΘ.

(4.5)

Equation 4.5 directly informs our hybrid procedure for estimating counterfactual

outcomes shown in Algorithm 1: (i) generate approximate samples from the posterior

1Noise-free prediction is often denoted as f in Gaussian process regression models. I avoid this
notation to avoid confusion with functions in the structural causal model.

72

Û, Θ̂ ∼ p(U,Θ|y, t,X) and (ii) for each approximate posterior sample Û, Θ̂ sample

from the conditional distribution p(y′(t∗) − y′|y, t,X, Û, Θ̂) in closed-form, taking

advantage of Gaussian closure under conditioning and subtraction. As the posterior

distribution p(U,Θ|y, t,X) is intractable for non-trivial kernels, we turn to Monte

Carlo approximate inference techniques.

4.3.1 Approximate Inference: Elliptical Slice and Metropolis-Hastings

Because we assume that our structural functions were drawn from Gaussian Pro-

cesses, which provide a closed-form expression for the conditional density of the

data, we are able to use standard likelihood-based approximate inference techniques.

In our experiments, we approximate this posterior distribution using elliptical slice

sampling [86] for the latent confounder, U, and random walk Metropolis Hastings [53]

on all kernel hyperparameters and exogenous noise variances, Θ. Pseudo-code imple-

mentations are presented in Algorithms 2 and 3.

4.3.2 Exact Inference: Gaussian Process Conditioning

To estimate p(y′(t∗) − y′|y, t,X,U,Θ), we extend the Gaussian process model

over in-sample and out-of-sample outcomes [103]. For compactness, we introduce the

following shorthand:

Wi,: = [ti,Xi,1, · · · ,Xi,nx ,Uo=pa(i),1, · · · ,Uo=pa(i),nu]

W∗,i,: = [ti,∗,Xi,1, · · · ,Xi,nx ,Uo=pa(i),1, · · · ,Uo=pa(i),nu]

The joint distribution over observed outcomes, y, noise-free outcomes for each

observed instance, y′, and noise-free counterfactual outcomes, y′(t∗), conditioned on

observed treatments, t, covariates, X, inferred confounders, U, and kernel hyperparam-

eters, Θ, is Gaussian distributed as follows, where K(W,W) = K ′(W,W) + σ2
yIni

and K ′(W,W) is the kernel matrix of k′y given Θ:

73

(
y

y′

y′(t∗)

|t,X,U,Θ
)
∼ N

(
0,

K(W,W) K ′(W,W) K ′(W,W∗)

K ′(W,W) K ′(W,W) K ′(W,W∗)

K ′(W∗,W) K ′(W∗,W) K ′(W∗,W∗)

)

(4.6)

Conditioning the joint distribution in Equation 4.6 on y, we have the following:

(y′

y′(t∗)

 ∣∣∣∣∣y, t,X,U,Θ
)
∼ N

(µ1

µ2

 ,
Σ1,1 Σ1,2

Σ2,1 Σ2,2

)

where,

µ1 = K ′(W ,W)K(W ,W)−1y

µ2 = K ′(W ,W∗)K(W ,W)−1y

Σ1,1 = K ′(W ,W)−K ′(W ,W)K(W ,W)−1K ′(W ,W)

Σ1,2 = K ′(W ,W∗)−K ′(W ,W)K(W ,W)−1K ′(W ,W∗)

Σ2,1 = K ′(W∗,W)−K ′(W∗,W)K(W ,W)−1K ′(W ,W)

Σ2,2 = K ′(W∗,W∗)−K ′(W∗,W)K(W ,W)−1K(W ,W∗)

Finally, as the difference of variables that are jointly Gaussian is Gaussian, we

have that (y′(t∗)− y′|y, t,X,U,Θ) is also Gaussian distributed:

µITE = µ2 − µ1

ΣITE = Σ1,1 − Σ1,2 − Σ2,1 + Σ2,2

(y′(t∗)− y′|y, t,X,U,Θ) ∼ N (µITE,ΣITE)

(4.7)

74

Algorithm 2 Hyperparameter Update - Random Walk MH

1: procedure HyperparameterUpdate(y, t,X,U,Θ)
2: parameters: αθ∈Θ, βθ∈Θ, prior hyperparameters; nMH inference computation budget;

driftθ∈Θ, Random walk proposal variance
3: for j = 1 to nMH do
4: for θ ∈ Θ do
5: αθ′ ← θ2/driftθ
6: βθ′ ← θ(αθ′ − 1)
7: θ′ ∼ γ−1(αθ′ , βθ′) . Sample α from an γ−1 with mean θ and variance driftθ
8: αθ ← θ′2/driftθ . Compute inverse proposal distribution parameters
9: βθ ← θ′(αθ − 1) . Compute inverse proposal distribution parameters

10: Θ′ ← Θ \ θ ∪ θ′

11: a← p(y, t,X,U,Θ′)

p(y, t,X,U,Θ)

γ−1(θ′;αθ′ , βθ′)

γ−1(θ;αθ, βθ)
. Compute MH acceptance probability

12: η ∼ Uniform(0, 1)
13: if η > min(a, 1) then
14: Θ = Θ′ . Accept proposal
15: end if
16: end for
17: end for
18: return Θ

4.4 Asymptotic Posterior Consistency

In the special case where each kernel in the GP-SLC model is instead replaced

with a linear kernel, k(a, a) = a · a>, shared confounding among instances enables

asymptotically consistent estimates of individual treatment effect. This is contrasted

with the propositional setting (i.e. no = ni) which does not lead to asymptotically

consistent counterfactual estimation. Informally, a continuous random variable ψ is

asymptotically consistent if its posterior p(ψ|V) approaches a Dirac-delta distribution

at some point ψ′, regardless of the prior p(ψ).

The analysis in this section follows the setup presented in D’Amour [30], with the

inclusion of shared latent confounding among individual instances. We omit covariates

x from this analysis and assume that nu = 1 for brevity without loss of generality.

75

Algorithm 3 Confounder Update - Elliptical Slice Sampling

1: procedure ConfounderUpdate(y, t,X,U,Θ)
2: parameters: prior hyperparameters; nES inference computation budget
3: for m = 1 to nES do
4: for j = 1 to nU do
5: done← False
6: ν ∼ N (0, σ2

εUj
I)

7: y ∼ Uniform(0, p(y, t,X,U,Θ))
8: φ ∼ Uniform(0, 2π)
9: [φmin, φmax]← [φ− 2π, φ]

10: while not done do
11: U′:,j ← U:,j cosφ+ ν sinφ
12: if p(y, t,X,U,Θ) > y then
13: U:,j ← U′:,j
14: done← True
15: else
16: if φ < 0 then φmin ← φ else φmax ← φ
17: φ ∼ Uniform(φmin, φmax)
18: end if
19: end while
20: end for
21: end for
22: return U′

4.4.1 Setup.

Assuming linear kernels and additive Gaussian exogenous noise, we can equivalently

rewrite the GP-SLC model as follows. This equivalent structural causal model is

parameterized by latent variables α, β, τ ∈ R and σ2
u, σ

2
t , σ

2
y ∈ R+.

εuo ∼ N (0, σ2
u)

εti ∼ N (0, σ2
t)

εyi ∼ N (0, σ2
y)

uo = εuo

ti = αuo=Pa(i) + εti

yi = βti + τuo=Pa(i) + εyi .

(4.8)

In this setting, estimating individual treatment effect reduces to estimating β, as

yi(t∗)− yi = β(t∗ − ti) for all o ∈ [[no]] and i ∈ [[ni]].

Proposition 4.4.1. When no = ni, ITEt∗ is not asymptotically consistent ∀t∗ ∈ R.

For a detailed proof of Proposition 4.4.1, see Proposition 1 in D’Amour [30]. In

summary, they show that given any set of latent parameters Θ = (α, β, τ, σ2
u, σ

2
t , σ

2
y),

76

there exists an alternative set of parameters Θ′ such that p(t,y|Θ) = p(t,y|Θ′) and

β 6= β′. In other words, the structural causal model forms a linear system of equations

that is rank-deficient. The set of parameters that satisfy this condition construct an

ignorance region.

Extending their results to the Bayesian setting, we have that for any two sets

of parameters Θ and Θ′ on the same ignorance region, the posterior odds ratio

reduces to the prior odds ratio, p(Θ|t,y)
p(Θ′|t,y)

= p(Θ)p(t,y|Θ)
p(Θ′)p(t,y|Θ′) = p(Θ)

p(Θ′)
. By definition, Θ is not

asymptotically consistent, as the posterior p(Θ|t,y) depends on the prior p(Θ). The

problem of asymptotic consistency can be mitigated when no < ni.

Theorem 4.4.2. Assume there exists an object o that is the parent of n instances,

I ′ = {i′1, ..., i′n}. Then ITEt∗ is asymptotically consistent as n approaches ∞, ∀t∗ ∈ R.

Proof. For all i′ ∈ I ′, we have that yi′ = βti′ + C + εyi′ for some constant C ∈

R. Therefore, the covariance between t and y in I ′ is uniquely given by β, i.e.

cov(ti′∈I′ , yi′∈I′) = β. Estimating the covariance of a bivariate normal has a unique

maximum likelihood solution. Therefore, by the Bernstein-von Mises Theorem [34]

we have that the posterior over β, and thus ITEt∗ , is asymptotically consistent as n

approach ∞.

Theorem 4.4.3. Assume there exist n objects, O = {o1, ..., on}, each of which are the

unique parents of k ≥ 2 instances I ′o = {i′o,1, ..., i′o,ko}. Then ITEt∗ is asymptotically

consistent as n approaches ∞,∀t∗ ∈ R.

Proof. For all o ∈ O, j ∈ [[ko]] let the t′i′o,j
and y′i′o,j

be treatment and outcome

respectively normalized by the sample average over all instances that share a parent

object. Specifically:

77

t′i′o,j = ti′o,j − t̄o (4.9)

y′i′o,j = yi′o,j − ȳo (4.10)

where,

t̄o =
ko∑
j=1

ti′o,j/ko (4.11)

ȳo =
ko∑
j=1

yi′o,j/ko (4.12)

Therefore, by the structural equation for t in Equation 4.8, we have the following:

t′i′o,j = αuo + εti′
o,j

−
ko∑
j=1

(αuo + εti′
o,j

)/ko (4.13)

= εti′
o,j

−
ko∑
j=1

εti′
o,j

/ko (4.14)

and similarly for y:

y′i′o,j = β(αuo + εti′
o,j

) + τuo + εyi′
o,j

−
ko∑
j=1

(β(αuo + εti′
o,j

) + τuo + εyi′
o,j

)/ko (4.15)

= βt′i′o,j + εyi′
o,j

−
ko∑
i

εyi′
o,j

/ko (4.16)

As εyi′
o,j

is independent of t′i′o,j
, we have that the covariance between t′i′o,j

and y′i′o,j
is

equal to β. Therefore, the problem of estimating β reduces to estimating the covariance

78

of a bivariate normal distribution, p(t′,y′), which has a unique maximum likelihood

solution. As in the proof of Theorem 4.4.2, by the Bernstein-von Mises Theorem [34]

we have that the estimate of β, and thus ITEt∗ , is asymptotically consistent as n

approach ∞.

4.5 Experiments

Unlike associational models, which can be evaluated using accuracy on held-

out test data, causal models produce predictions about unobserved counterfactual

distributions. As a result, effective evaluation of causal models requires different

methods [47]. We evaluate the GP-SLC model using three benchmarks with known

counterfactual outcomes. In Section 4.5.1, we evaluate GP-SLC using a fully synthetic

hierarchical data generating process. In Section 4.5.2 we modify the Infant Health and

Development Program (IHDP) benchmark [54] to include hierarchical structure and

latent confounders. In Section 4.5.3 we introduce and evaluate on a new benchmark

task for observational causal inference with hierarchical data, predicting the effect of

changes in temperature on state-wide electric energy consumption in New England

(NEEC).

We implement the GP-SLC model using Gen [28]. Except where otherwise specified

we set nu = 3 and αθ = βθ = 4 for each inverse gamma prior over kernel hyperparam-

eters and exogenous noise variance. We estimate individual treatment effects using

Algorithm 1, with nOuter = 5000, nMH = 3, nES = 5, and driftθ = 0.5,∀θ ∈ Θ.

We compare the GP-SLC model against six baselines: a GP regression model

that ignores latent confounding variables (GP-NoConf), a GP-SLC model where each

instance is incorrectly assigned a single object (GP-NoObj), a seperate GP regression

model for each object (GP-PerObj), Bayesian additive regression trees (BART) [54],

a random slope and intercepts linear model (MLM 1), and a random intercepts linear

model (MLM 2) [43]. The Gaussian process baselines are ablations of the full GP-SLC

79

(a) Original data. (b) Unbiased. (c) Biased. (d) Energy usage (GWh)

(e) Mean squared error in estimated sample average treatment effect.

Figure 4.2: Process and results for New England energy consumption benchmark.
We sample hotter days with higher probability for states with higher daily energy consumption
(a-d). Sampling in this way simulates confounding, creating an observational relationship
(consumption is signicantly higher in hotter days) that differs from the causal relationship
(low or high temperature causes a moderate increase in energy consumption). GP-SLC (this
chapter) produces accurate estimates of counterfactual outcomes, despite this confounding
bias (e). For baselines that ignore hierarchical structure (GP-NoObj and GP-NoConf),
accuracy decreases significantly with increasing confounding bias. Results are normalized by
the
√

MSE of the GP-SLC model with bias = 9◦F and 25 samples per state.

model, and use the same kernels, priors over hyperparameters, and inference scheme.

The BART baseline uses the object identifier, o, as an additional covariate.

We use two evaluation metrics to evaluate GP-SLC and baselines, mean squared

error of the sample average treatment effect, MSE = Et∗ [(SATE∗t∗ − SATEt∗)
2], and

precision in estimation of heterogeneous effect [54], PEHE = Et∗ [
∑Ni

i (ITE∗i,t∗ −

ITEi,t∗)
2/Ni], where ITE∗i,t∗ and SATE∗T∗ are the actual effects and ITEi,t∗ and SATEt∗

are the predicted effects. For the synthetic benchmark, we average over 100 reg-

ular intervals between the 5th and 95th percentile of treatment assignment in the

observational data. For the NEEC benchmark, we average over {30, 30.1, ..., 70◦F}.

80

Figure 4.3: Comparison among methods on the New England energy consumption
benchmark. Above are GP-SLC and all baselines’ effect estimates on the NEEC benchmark
with bias = 9◦F and 25 samples per state. Green shaded regions indicate 90% credible
intervals. GP-SLC effectively recovers the effect of temperature on energy consumption,
despite the latent confounding introduced by biased sampling. The best performing baseline,
GP-PerObj, produces poor estimates of the effect of high temperatures in Rhode Island.

4.5.1 Synthetic Data

We evaluate GP-SLC and various baselines on two synthetic datasets with hierar-

chically structured latent confounders, one with additive and one with multiplicative

treatment and outcome functions. Both synthetic datasets are generated using three

dimensional object-level confounders for 20 objects, each of which contains 10 instances.

Observed instance-level covariates are generated as a linear function of object-level

Gaussian distributed latent confounders. Details for synthetic treatment and outcome

functions are presented in the supplementary materials, and evaluation results are

shown in Table 4.1. GP-SLC consistently matches and exceeds the counterfactual

prediction performance of the six baselines on synthetic data. Baselines that ignore ob-

ject structure (GP-NoConf and GP-NoObj) produce the least accurate counterfactual

predictions.

In addition to the synthetic experiments presented in Table 4.1, we tested the

behavior of GP-SLC using two alternative synthetic data generating processes. On the

81

first, a linear structural data generating process with shared confounding, GP-SLC

produces comparable estimates to the multi-level model baselines. On the second, in

which each object shares a common effect of treatment and outcome rather than a

common cause, GP-SLC is not susceptible to collider bias [14, 39]. This empirical

finding is consistent with recent theory on object conditioning [63].

4.5.2 Infant Health and Development Program

The IHDP benchmark [54] uses real data for treatments (whether a child receives

high-quality child care and home visits from a trained provider) and covariates (birth

weight, head circumference, etc.) from the 1992 Infant Health and Development

Program [101] with a synthetic nonlinear outcome function. We modify the IHDP

benchmark to simulate hierarchically structured data by randomly duplicating 30%

of the data instances and reassigning the duplicate’s treatment assignment to be

the opposite of the original instance. To introduce variation between duplicated

instances, we add noise to each individuals’ continuous covariates from a N (0, σ2
j),

where σ2
j is 5% of the jth covariate’s marginal variance. We obscure the remaining

15 categorical covariates, representing object-level latent confounding. Even though

the 15 categorical covariates are obscured from the GP-SLC model, they are identical

across duplicates, unlike the observed covariates. We then generate observed and

Model
Additive Multiplicative√

PEHE
√

MSE
√

PEHE
√

MSE

GP-SLC 1.0 1.0 1.0 1.0
GP-NoConf 21.3 25.3 4.2 7.6
GP-NoObj 22.2 27.0 4.5 8.1
GP-PerObj 3.7 3.4 1.1 0.9

MLM1 1.2 1.02 2.4 2.9
MLM2 1.3 1.6 4.4 9.3
BART 8.5 10.7 2.6 4.3

Table 4.1: Results on synthetic data with additive and multiplicative nonlinear
treatment and outcome functions. Scores are normalized by the score of GP-SLC.
Lower is better.

82

counterfactual outcomes using the benchmark synthetic outcome function, applied to

treatment, modified covariates, and latent confounders. In this setting, Pa(i) = Pa(i′)

if instance i is a duplicate of instance i′ or vice versa. Although each duplicate’s

treatment assignment is deterministic, the overall relationship between treatment and

outcome is still confounded, as we only duplicate a subset of the original instances.

For the IHDP benchmark, which has binary treatment variables, we modify the

GP-SLC model by replacing the expression ti = ft(uo=Pa(i), xi, εti) with the expressions

t̂i = ft̂(Uo=Pa(i),:,Xi,:, εt̂i) and ti ∼ Bernoulli(expit(t̂i)). In this setting, we use elliptical

slice sampling to approximate the latent logit probability of treatment, t̂.

Given the small size of each object, we omit the GP-PerObj baseline model from

this evaluation. As the IHDP benchmark includes binary treatment variables we

compared against four additional baselines: balanced linear regression (BalReg) and

balanced neural nets (BALNN) [64], targeted maximum likelihood estimation with

the superlearner (TMLE) [130], and inverse probability of treatment weighting with

logistic regression (IPTW) [61].

Results of the IHDP evaluation are presented in Table 4.2. GP-SLC matches and

exceeds the performance of other baselines when predicting the effect of assigning

treatment to individuals who were previously untreated. In this setting, the linear

models (MLM 1 and MLM 2) produce the least accurate counterfactual predictions.

4.5.3 New England Energy Consumption

We introduce a new benchmark for estimating heterogeneous effects in hierarchically

structured settings, predicting the effect of changing temperature on state-wide electric

energy consumption in New England. Unlike the evaluation in Section 4.5.2, which

includes real treatments, covariates, and confounders and a synthetic outcome function,

the New England energy consumption (NEEC) benchmark preserves outcome functions

from real quasi-experimental data, and uses biased sampling to induce confounding.

83

Model
Control Treated√

PEHE
√

MSE
√

PEHE
√

MSE

GP-SLC 1.0 1.0 1.0 1.0
GP-NoConf 1.03 1.07 1.04 0.94
GP-NoObj 1.11 1.02 0.82 1.08

MLM1 68.3 33.2 106.7 1028.4
MLM2 73.3 389.1 45.8 63.2
BART 3.7 1.1 2.4 0.33

BALReg 5.1 82.7 1.9 0.5
BALNN 2.1 7.0 1.7 4.5

TMLE n/a 209.8 n/a 12.2
IPTW n/a 50.6 n/a 90.5

Table 4.2: Results on the modified infant health and development program bench-
mark, shown separately for treated and untreated individuals. Scores are normal-
ized by the score of GP-SLC. TMLE and IPTW do not estimate individual treatment effects.
Lower is better.

Specifically, we generate data for the NEEC benchmark task using the New England

Independent Service Operator’s public records on hourly dry-bulb temperature and

state-wide energy consumption for the 2018 calendar year [40], which we then aggregate

into daily averages.

While the marginal distribution over daily average temperature is nearly identical

across states in the original dataset, the causal relationship between temperature and

energy consumption differs across states, likely due to differences in population density,

and commercial/industrial activity. To introduce confounding, we systematically

sample days (instances) from states (objects) based on the state’s typical energy

consumption, including hotter days with higher probability for high consuming states.

Specifically, we use importance resampling with a target distribution over Fahrenheit

temperatures T ∼ N (45 + bias · so, 15), where sCT = 3, sMA = 2, sME = 1, sNH =

−1, sRI = −2, sV T = −3. An example of this sampling with bias = 9 is shown in

Figure 4.2 (a-c). Biased sampling in this way introduces a statistical dependency

across the dataset (consumption is significantly higher in hotter days), that differs

from the causal relationship (low or high temperature causes a moderate increase in

84

energy consumption). This approach of sampling quasi-experimental data to simulate

confounding is an emerging standard in causal inference evaluation [47] although

existing benchmarks are not hierarchically structured. Figure 4.2 (a-d) shows an

example of this sampling process for the NEEC benchmark.

Sampling in this way does not provide instance-level counterfactual outcomes.

Instead, we estimate the sample-average ground truth counterfactual outcome by

fitting a Gaussian process regression model for each state, using treatments and

outcomes from the entire calendar year.

Figure 4.2e shows the models’ performances with varying degree of confounding and

sample sizes, and Figure 4.3 shows the estimated and actual effect of temperature on

electric energy consumption for two of the six states. Despite the induced confounding,

GP-SLC consistently produces accurate estimates of causal effect. The baselines that

ignore confounding (GP-NoConf and GP-NoObj) perform poorly as the degree of

confounding increases, incorrectly attributing sample-wide association as indicative

of causal effect. The linear multi-level models (MLM 1 and MLM 2) are not biased

by confounding, but produce poor estimates due to their restrictive parametric

assumptions. The remaining two baselines (GP-PerObj and BART) produce more

accurate estimates than the other four baselines, but still overfit.

Model CT MA ME NH RI VT

GP-SLC 1.0 1.0 1.0 1.0 1.0 1.0
GP-NoConf 13.2 13 31.5 41.6 47.4 14.9
GP-NoObj 19.1 14 26.8 36.2 48 16.5
GP-PerObj 1.6 1.3 5.2 9.7 6.5 0.7

MLM1 6.9 5 25.0 5 5.1 0.7
MLM2 6.4 4.9 39.4 6.3 9.9 3.8
BART 4.1 2.1 13.3 3.6 3.3 2.4

Table 4.3:
√

MSE for the New England energy consumption benchmark, with
bias = 9◦F and 25 samples per state. Lower is better. Scores are normalized by
GP-SLC’s score for the same state.

85

4.5.4 Limitations

Despite the fact that GP-SLC produces state-of-the-art counterfactual predictions

on most of our synthetic and semisynthetic benchmarks, it tends to underestimate the

uncertainty in these estimates. In other words, the posterior density on the ground-

truth counterfactual is sometimes low, despite the fact that the mean estimate is close to

the ground-truth relative to the baselines. We suspect that this is partially attributable

to inaccuracies resulting from our approximate inference procedure (Algorithms 2 and

3). Alternative approximate inference schemes, such as using our current approach as

a rejuvenation move in a sequential Monte Carlo (SMC) algorithm [35], may resolve

these inaccuracies. This kind of SMC-based inference procedure may also help GP-SLC

scale to problems with more covariates and objects than we explore in this chapter.

Our empirical study focuses on data generating processes that satisfy GP-SLC’s

implicit semiparametric assumptions; (i) covariates for individuals belonging to the

same object are marginally Gaussian distributed, and (ii) exogenous noise is additive

and Gaussian. The effect of these modeling assumptions on counterfactual prediction

and estimates of effect strength needs additional empirical characterization, ideally

via large-scale synthetic experiments (where ground truth is known and robustness to

modeling bias can be qualitatively studied).

4.6 Related Work

Leveraging hierarchical structure is well-established as a technique for adjusting

for latent confounding [43, 45, 57]. Using Gaussian processes for causal inference is

also well-established [2, 3, 116, 120, 143], as is the use of generative model approaches

to adjust for latent confounders given restrictions on structure [78, 84, 128, 132]. To

the best of our knowledge, GP-SLC is the first semiparametric generative modeling

approach that leverages hierarchical structure to adjust for latent confounders.

86

GP-SLC is one of many recent techniques [64, 118] for estimating individual-

level treatment effects. Prior work focuses on the propositional setting under strong

ignorability, i.e. with no latent confounders. We focus on the hierarchical setting in

which latent confounders are shared across multiple instances.

Recent work [116] has used Gaussian process models for causal inference in temporal

settings, which assumes unconfoundedness and that the outcome is smooth with

respect to time and covariates. GP-SLC allows for the existence of object-level latent

confounders, and instead assumes that the outcome is smooth with respect to treatment

assignment, covariates, and latent confounders. Longitudinal data analysis is closely

related to the hierarchical settings we consider in this work: measurements (instances)

of individuals (objects) are repeated over a period of time. Extending GP-SLC to the

setting where latent confounders are not shared across instances, but instead change

over time, is an exciting area of future work.

GP-SLC is most similar to recent work on multi-task GPs for causal inference [2],

in that their approach also uses GP models to estimate individual treatment effects.

However, GP-SLC: (i) handles hierarchical latent confounders by first performing

inference over object-level latent variables; (ii) accounts for the covariance between

noise-free factual and counterfactual outcomes (see Σ12 and Σ21); and (iii) uses a

Monte Carlo algorithm for inference that yields quantified uncertainty estimates. Their

approach could be applied in hierarchical settings by treating the object identifier o

as a categorical covariate and using a delta kernel to construct the outcome kernel

covariance matrix. This is identical to the GP-PerObj baseline, except that GP-PerObj

does not share inferred kernel hyperparameters across objects.

4.7 Conclusions

This chapter presents GP-SLC, a Gaussian process model for causal inference with

hierarchically structured latent confounders. In Section 4.5, we show that, compared

87

to widely used alternatives, GP-SLC produces more accurate estimates of causal effect

in realistic sparse observational settings where strong prior knowledge about structure

can inform causal estimates. The hierarchical structure we exploit in this chapter

is one of many kinds of structural background knowledge that could improve causal

estimates, and developing techniques to exploit such knowledge is an important area

of future work. Extending GP-SLC to handle large observational datasets [23, 100] or

to leverage experimental evidence [137] are also exciting areas of future work.

88

CHAPTER 5

MULTI-SOURCE EXPERIMENTAL DATA

In this chapter, we explore a new approach to implementing Bayesian causal

inference based on probabilistic programming, inspired by Bayesian synthesis [114].

Probabilistic programming languages enable users to compactly specify probabilistic

models in code. Some languages, like Stan [24], have syntax that closely resembles

the statistical notation often used in the literature to define probabilistic models: a

list of equations of the form x ∼ Others, like Gen [28], allow users to include

arbitrary program control flow in their models; a model is represented by a program

that simulates stochastically from a distribution. In this chapter, we represent

hypothesized causal models explaining some phenomenon as programs in MiniStan, a

simple probabilistic programming language designed to resemble Stan (Figure 5.1).

Then, we use a more expressive probabilistic programming language, Gen, to encode a

prior and likelihood over MiniStan programs, and to do inference. The Gen model (i)

stochastically generates MiniStan programs to encode a prior distribution over causal

model structures and parameters, (ii) programmatically edits the generated MiniStan

programs to reflect interventions and experimental conditions, then (iii) interprets the

MiniStan programs to generate observational and experimental data. We can then use

Gen’s inference programming and conditioning features to condition the entire process

on actual observational and experimental data, and to obtain posterior samples of the

MiniStan code defining the original observational model—that is, to perform both

structure learning and parameter estimation.

89

Causal models are typically structured as a set of autonomous components [4, 50,

94], such that interventions in the system can be accurately represented in the model as

an alteration of a small number of model components, and all other model components

(and the causal relationships among them) remain unchanged. In the formalism of

causal graphical models, interventions are typically expressed using the do-operator [94],

which fixes the value of one random variable and removes the influence of its parents.

However, many realistic interventions are not accurately represented by this particular

variety of model alteration [38, 68, 119]. For example, realistic interventions might best

be represented by altering the functional form of a particular dependence, enabling

or disabling specific causes, or enacting complex combinations of these interventions.

This chapter demonstrates interventions represented as modifications of probabilistic

program source code and shows how this representation enables the Bayesian synthesis

approach to handle a broad class of experimental data.

5.1 A Conceptual Example

Consider the task of inferring whether a student’s belief in her ability is causal

for success at a research project. Observational data on student belief and student

success alone are insufficient to answer this question, due to the confounding effect of

skill (see Figures 5.2a and 5.2b).

P → S | S; P Programs

S → x = E | x ∼ D Statements

D → normal(E,E) | uniform(E,E) | bernoulli(E) Distributions

E ∈ deterministic Julia expressions

x ∈ Julia variable identifiers

Figure 5.1: Grammar of MiniStan

90

(a) “Belief and skill matter” CGM. (b) “Only skill matters” CGM.

quote

s ∼ normal(mu_s, sigma_s)

b ∼ normal(s, sigma_b)

logit_o = s * lambda_so + b * lambda_bo

o ∼ bernoulli(1/(1+exp(-logit_o)))

end

(c) “Belief and skill matter” model as source
code.

quote

s ∼ normal(mu_s, sigma_s)

b ∼ normal(s, sigma_b)

logit_o = s * lambda_so

o ∼ bernoulli(1/(1+exp(-logit_o)))

end

(d) “Only skill matters” model as source code.

Figure 5.2: A conceptual example combining structure learning and parameter
estimation.

We can imagine multiple types of experiments that would enable effective causal

inference despite the confounding effect of skill. For example, an advisor could

encourage a student, shifting her belief in her ability (but not increasing her skill). An

advisor could also administer an assessment on the key skills needed for the project,

before the student attempts it, and look at the results. Unfortunately, although this

might reveal the true skill level to the advisor, this might also change the student’s

belief in her own ability to succeed. Hypothetically, one can imagine a miracle pill

that modifies one’s confidence to a fixed value, without changing anything else. Each

of these experiments corresponds to a different modification to the source code from

Figures 5.2c and 5.2d. Examples of these modifications are shown in Figures 5.3a-f.

This chapter shows how to formalize this example, using probabilistic programs

that generate, edit, and interpret the source code of causal models. It also presents

results from an implementation in the Gen probabilistic programming language,

demonstrating the utility of incorporating diverse sources of experimental data.

91

5.2 Priors on Causal Models

To compute the posterior distribution over the two candidate causal models, we

first specify a prior distribution over a set of global latent variables. One of these

variables, edge, determines whether Belief influences Outcome.

µs ∼ Normal(0, 1) σs ∼ Uniform(0, 1) σb ∼ Uniform(0, 1)

λso ∼ Uniform(0, 1) λbo ∼ Uniform(0, 1) edge ∼ Bernoulli(0.5)

In the Bayesian synthesis framework, a prior distribution over causal models is a

stochastic procedure generating programs in a domain specific language (Figure 5.5).

The grammar for our simple domain specific language, MiniStan, is presented in

Figure 5.1.

quote

s ∼ normal(mu_s, sigma_s)

b = 5

logit_o = s * lambda_so + b * lambda_bo

o ∼ bernoulli(1/(1+exp(-logit_o)))

end

(a) “Belief and skill matter” with belief pill.

quote

s ∼ normal(mu_s, sigma_s)

b = 5

logit_o = s * lambda_so

o ∼ bernoulli(1/(1+exp(-logit_o)))

end

(b) “Only skill matters” with belief pill.

quote

s ∼ normal(mu_s, sigma_s)

b ∼ normal(s + 3, sigma_b)

logit_o = s * lambda_so + b * lambda_bo

o ∼ bernoulli(1/(1+exp(-logit_o)))

end

(c) “Belief and skill matter” with encouragement
design.

quote

s ∼ normal(mu_s, sigma_s)

b ∼ normal(s + 3, sigma_b)

logit_o = s * lambda_so

o ∼ bernoulli(1/(1+exp(-logit_o)))

end

(d) “Only skill matters” with encouragement de-
sign.

quote

s ∼ normal(mu_s + 2, sigma_s)

b ∼ normal(s, sigma_b / 100)

logit_o = s * lambda_so + b * lambda_bo

o ∼ bernoulli(1/(1+exp(-logit_o)))

end

(e) “Belief and skill matter” with assessment.

quote

s ∼ normal(mu_s + 2, sigma_s)

b ∼ normal(s, sigma_b / 100)

logit_o = s * lambda_so

o ∼ bernoulli(1/(1+exp(-logit_o)))

end

(f) “Only skill matters” with assessment.

Figure 5.3: Interventions expressed as MiniStan source code transformations.

92

Figure 5.4: Graphical meta-model for the Bayesian synthesis approach to causal
structure and parameter learning. A set of global parameters θ determine the source
code of the observational causal program Pobs, which is modified via code-editing intervention
functions to induce experimental causal programs for the belief-pill (Pbp) encouragement
design (Pe), and the assessment (Pa) interventions. The code for each program is run through
an interpreter, which generates (observational or experimental) data. The likelihoods of
the various kinds of data under the different interpreted programs can be used to infer the
posterior distribution over θ, and therefore over the observational causal program Pobs.

5.3 Likelihoods for Experiments

To incorporate experimental evidence of various forms, the Bayesian synthesis

approach requires an intervention library which consists of a set of code-editing

functions that modify causal model programs in the domain specific language. For the

conceptual example, our intervention library contains three interventions: (i) an atomic

intervention, which applies the do-operator; (ii) a shift intervention, which changes the

mean of a distribution by a fixed increment; and (iii) a variance-scaling intervention,

which modifies the variance of a random variable assumed to be drawn from a normal

distribution. In principle, an intervention library could contain arbitrary rules for

modifying causal model source code, including changing the underlying distribution

for a random variable or adding variables (latent or observed) that didn’t exist in the

observational model.

These interventions can be freely composed to represent a diverse set of experimental

scenarios. We demonstrate this compositionality in the “assessment” experiment,

which is composed of a shift intervention (a student’s skill may improve if she has to

93

1 @gen function generate_causal_model()

2 mu_s = @trace(normal(0, 1), :mu_s)

3 sigma_s = @trace(uniform(0, 1), :sigma_s)

4 sigma_b = @trace(uniform(0, 1), :sigma_b)

5 lambda_so = @trace(uniform(0, 1), :so_weight)

6 lambda_bo = @trace(uniform(0, 1), :bo_weight)

7 edge = @trace(bernoulli(0.5), :edge)

8

9 if edge

10 logit_o_expr = quote s * $so_weight + b * $bo_weight end

11 else

12 logit_o_expr = quote s * $so_weight end

13 end

14

15 causal_model = quote

16 s ∼ normal($mu_s, $sigma_s)
17 b ∼ normal(s, $sigma_b)
18 logit_o = $logit_o_expr
19 o ∼ bernoulli(1/(1+exp(-logit_o)))

20 end

21 return causal_model

22 end

(a)

quote

s ∼ normal(0.237, 0.449)

b ∼ normal(s, 0.913)

logit_o = s * 0.137 + b * 0.852

o ∼ bernoulli(1/(1 + exp(-logit_o)))

end

quote

s ∼ normal(-0.592, 0.302)

b ∼ normal(s, 0.724)

logit_o = s * 0.503 + b * 0.491

o ∼ bernoulli(1/(1 + exp(-logit_o)))

end

quote

s ∼ normal(1.892, 0.108)

b ∼ normal(s, 0.301)

logit_o = s * 0.542

o ∼ bernoulli(1/(1 + exp(-logit_o)))

end

(b)

1 @gen function generate_data(NObs, NBeliefPill, NEncouragement, NAssessment)

2 observational_model = @trace(generate_causal_model())

3 belief_pill_model = applyDoIntervention(observational_model, :b, 5)

4 encouragement_model = applyShiftIntervention(observational_model, :b, 3)

5 assessment_model = applyVarianceScalingIntervention(applyShiftIntervention(observational_model, :s, 2),

6 :b, 1/100)

7

8 observational_data = @trace(interpretMiniStan(observational_model, n_runs=NObs), :obs)

9 belief_pill_data = @trace(interpretMiniStan(belief_pill_model, n_runs=NBeliefPill), :belief_pill)

10 encouragement_data = @trace(interpretMiniStan(encouragement_model, n_runs=NEncouragement), :encouragement)

11 assessment_data = @trace(interpretMiniStan(assessment_model, n_runs=NAssessment, :assessment)

12 end

(c)

Figure 5.5: Gen implementation of causal inference via Bayesian synthesis. The
generate causal model Gen program (a) encodes a prior distribution over MiniStan models;
(b) shows three samples from this prior. The generate data Gen program (c) encodes the
likelihood: it samples a possible causal model from the prior (line 2), modifies it to obtain
MiniStan code representing experimental conditions (lines 3-6), then simulates observational
and experimental data by running the MiniStan programs (lines 8-11). The interpreter is
itself a Gen probabilistic program.

take a test) and a variance-scaling intervention (a student’s belief in her ability has

less noise after taking a test).

When interpreted, a causal program in MiniStan represents a likelihood function

over observational data. To compute the likelihood of experimental data, we sim-

94

1 function applyDoIntervention(program, var, newValue)

2 walk(program) do expr

3 @match expr begin

4 :($x = $val) && if x == var end => :($var = $newValue)
5 :($x ∼ $dist) && if x == var end => :($var = $newValue)
6 _ => expr

7 end

8 end

9 end

1 function applyShiftIntervention(program, var, shiftValue)

2 walk(program) do expr

3 @match expr begin

4 :($x ∼ normal($mean, $std)) && if x == var end => :($x ∼ normal($mean + $shiftValue, $std))
5 :($x ∼ uniform($a, $b)) && if x == var end => :($x ∼ uniform($a + $shiftValue, $b + $shiftValue))
6 :($x = $value) && if x == var end => :($x = $value + $shiftValue)
7 _ => expr

8 end

9 end

10 end

Figure 5.6: Julia implementation of the atomic (“do”) intervention and the shift
intervention. Rather than perform graph operations such as removing edges, an atomic
intervention on a program walks the program’s code and replaces any expression that assigns
var with a new expression, implementing the intervention (var = newValue). The shift
intervention walks the program’s code and adds shiftvalue to the mean argument for the
normal distribution, the lower and upper bound arguments for the uniform distribution, and
the value of any deterministic assignment.

ply modify the causal program using the intervention library before subsequently

interpreting the modified program.

5.4 Inference

We demonstrate the utility of this approach by performing approximate posterior

inference over synthesized causal model programs from our conceptual example. In

this example we: (i) generate a MiniStan program from the prior, (ii) generate a set

of observational and experimental data from the interpreted MiniStan program, and

(iii) perform approximate posterior inference over synthesized causal models using

sequential Monte Carlo [35] with Metropolis Hastings rejuvenation. We generated

ten individuals’ skill, belief, and outcome for each of the four observational and

experimental settings from a single causal model where µs = −0.013, σs = 0.776, σb =

0.646, λso = 0.734, λbo = 0.717, and edge = True.

95

Figure 5.7: Posterior probability of the existence and strength of causal depen-
dence between a student’s belief and her subsequent outcome. The vertical gray
line is the actual value for lambda bo.

Using only observational data, the posterior probability of the edge variable is low.

This may be because the data can be explained only by appealing to skill, and this

simpler model could lead to a higher marginal probability than one which introduces

a new parameter (lambda bo). (This phenomenon is sometimes called “Bayesian

Occam’s Razor”.) However, as we incorporate additional experimental evidence the

posterior probability of the edge increases. Similarly, the posterior distribution over

λbo, the effect of belief on outcome, concentrates around the true value as we leverage

experimental evidence.

5.5 Discussion

The Bayesian synthesis approach we have outlined in this chapter provides several

advantages over alternative approaches to structure discovery and parameter estimation

in causal modeling: (i) an explicit characterization of uncertainty over model structures;

(ii) a principled way to model diverse interventions; and (iii) a formalization that

can be re-used in diverse problems, with varying degrees of prior knowledge, without

requiring practitioners to design custom inferences for each use case.

Although this example uses parametric causal models, it is conceptually straight-

forward to use Gaussian processes and/or Dirichlet process mixture models for the

96

functional forms of causal relationships [114]. It may thus be fruitful to develop

Bayesian variants of existing non-parametric techniques for causal inference [62, 78].

The results reported here were obtained using vanilla sequential Monte Carlo

over the joint space of model structure, parameters, and the latent variables in

each observation or experiment. In order for this approach to scale to complex

models, hierarchical priors over models, and large datasets, we expect more powerful

techniques will be necessary. However, the Gen platform provides programmable

inference constructs [28], including hybrids of Hamiltonian Monte Carlo [37] and

Metropolis-Adjusted Langevin [108] approaches with sequential Monte Carlo [35], that

could potentially address some of these scaling challenges.

5.6 Related Work

Probabilistic programs are often used to represent causal processes [48]. Some

languages, such as Omega [124], make this causal interpretation explicit, including

a semantics for interventional and counterfactual reasoning. It would be interesting

to consider whether the framework we present here, which considers interventions to

be arbitrary code-editing procedures, could also be usefully applied to counterfactual

reasoning problems.

Incorporating experimental evidence for structure learning and parameter estima-

tion can be thought of as the inner loop of an optimal experimental design procedure.

Probabilistic programs have been used to automate this search over experiments [91],

seeking to maximize the expected information gain over some query given new evidence.

In that work, experiments are modeled as arguments to a probabilistic program. Our

approach instead describes an experiment as a modification of MiniStan programs, en-

abling a clean abstraction between the specification of causal models (or distributions

over causal models) and interventions that modify those models.

97

Improving methodology for combining observational and experimental evidence

has far-reaching implications for a wide variety of scientific disciplines, and has

received significant attention in the graph-based causal inference literature. For

example, extensions of the do-calculus have been developed to incorporate experiments

expressed as atomic interventions given a known causal graphical model structure [74].

Recent extensions of existing graph-based structure discovery algorithms have been

made to incorporate atomic interventions [133] and imperfect interventions [141].

Our work proposes characterizing imperfect interventions as code-editors acting on

probabilistic programs; this representation enables us to perform posterior inference

(with uncertainty estimates) over both structure and model parameters.

98

CHAPTER 6

SBI: A SIMULATION-BASED TEST OF
IDENTIFIABILITY FOR BAYESIAN STRUCTURAL

CAUSAL INFERENCE

Drawing causal conclusions from data requires assumptions about underlying causal

mechanisms [97]. Consequently, it is important to determine when these assumptions

are sufficient to answer a causal query, i.e. whether the query is identifiable. Existing

computational methods, such as the do-calculus, can rigorously determine identifiability

from graph structure alone [59, 93], however, graph structure alone can be incomplete

in some cases. For example, instrumental variable designs require an assumption of

monotonicity or linearity [26], within-subjects designs require an assumption that

latent confounders are shared across units [43, 77], and regression discontinuity designs

violate positivity, an assumption required by the do-calculus [73].

A growing body of causal inference research employs assumptions that go beyond

graph structure. For example, researchers in causal machine learning [9, 52], and in

hierarchical probabilistic modeling approaches to causal inference [21, 78, 128, 138],

have achieved promising results. Some of these techniques can be expressed as priors

over structural causal models, and implemented as probabilistic programs.

Unfortunately, it is difficult to apply either analytical or graphical techniques to

determine the identifiability of complex Bayesian approaches to causal inference. As

a result, these approaches can produce inaccurate effect estimates even with infinite

data [30, 107]. This chapter introduces new automated techniques that can improve

the rigor of causal inferences by providing simulation-based tests of identifiability

(SBI).

99

T Y

ti = ft(ui, εti ; θ)

yi = ft(ti,ui, εyi
; θ)

Causal Effect

N
u

is
an

ce
P

ar
am

et
er

∆Q̂

Causal Effect

N
u

is
an

ce
P

ar
am

et
er

∆Q̂

T YX

ti = ft(ui, εti ; θ)

xi = fx(ti, εxi
; θ)

yi = fy(xi,ui, εyi
; θ)

(a) Non-identifiable causal model and likelihood (b) Identifiable causal model and likelihood

Figure 6.1: Overview of simulation-based identifiability. Simulation-based identifia-
bility (SBI) recasts causal identifiability as an optimization problem that seeks to maximize
the data likelihood and the distance, ∆Q̂, between the effect estimates induced by two
sets of parameters, θ(1) and θ(2). When causal effects are not identifiable (a) SBI discovers
maximum likelihood parameters (blue and red) that estimate different causal effects. When
causal effects are identifiable (b) the two models converge to the same effect estimates.

SBI is compatible with any prior over structural causal models that: (i) can be used

to sample data; and (ii) induces a differentiable likelihood function. The key innovation

is to reduce causal identification to an optimization procedure that maximizes the

likelihood of two sets of parameters while also maximizing the distance between their

causal effect estimates. If the optimal solution is two sets of parameters that agree on

effect estimates, then the effect is identifiable. See Figure 6.1 for intuition.

In Section 6.3, we prove that SBI is asymptotically sound and complete, assuming

certain (strong) regularity conditions. In Section 6.4, we show that SBI is broadly appli-

cable by presenting a suite of compatible benchmarks reflecting common graph-based

and quasi-experimental designs. We show empirically that SBI correctly determines

whether average treatment effects are identifiable for all fourteen benchmarks. Fi-

nally, we use SBI to extract quantitative insight about Gaussian process regression

discontinuity designs.

100

6.1 Related Work

Our work is not the first to automate identification for causal inference. Symbolic

methods for observational [59, 93] and experimental [74] data determine whether queries

are nonparametrically identifiable using graph structure alone. Similar methods have

been developed for linear models [17, 69]. When applicable, symbolic methods like the

do-calculus should be the de-facto choice, as they have strong theoretical guarantees,

are computationally efficient, and require minimal ancillary assumptions. However,

these approaches are inconclusive for more flexible parameterizations, such as those

using Gaussian processes, or models employing non-graphical assumptions, such as

within-subjects designs. These methods (and SBI) do not attempt to test whether a

set of assumptions are satisfied given a particular dataset. Instead, they test whether

assumptions are sufficient to uniquely determine a causal effect from (yet unseen)

data.

Similar approaches for determining identifiability have been developed in other

fields, such as neuroscience [129] and dynamical systems [105], by searching for

likelihood equivalent parameters using gradient-based search. SBI differs from these

approaches in two important ways. First, SBI uses a particle-based objective function

to search for likelihood equivalent models globally, rather than locally near a single

maximum likelihood solution. Second, SBI’s objective function searches for models that

estimate different causal effects, not only different parameters. This distinction means

that SBI can correctly determine identifiability even when effects are composed of

many parameters (e.g. see Section 6.3.2). It is well known that queries can be identified

even in settings where individual parameters cannot [97]. Optimization techniques

have been used to bound counterfactual queries [11, 126, 142] or for neural-causal

models [139], but do not support user-specified parametric assumptions.

Bayesian priors over parametric structural causal models can be implemented in

probabilistic programming languages [48, 83], which provide a syntax for expressing

101

Design Description Source

Unconfounded No latent variables influence both treatment, t, and outcome, y. [93]

Confounded A latent confounder, u, influences both t and y. [93]

Backdoor An observed confounder, x, influences t and y. [93]

Frontdoor u influences t and y, but does not influence a mediator, x. [93]

Instrumental
variable

u influences t and y. An observed instrument, x, influences t, does not
influence y except through t, and is not influenced by u.

[8]

Within subjects Each instance of u influences multiple instances of t and y. [36]

Regression
discontinuity

An observed confounder, x, influences t and y. t is fully determined by
x being above or below a known threshold.

[111]

Table 6.1: Description of quasi-experimental designs benchmarks. Of these seven
standard causal designs, instrumental variable, within subjects, and regression discontinuity
designs require assumptions that go beyond graph-structure. Parameterized versions of all
seven designs can be represented as probabilistic programs, and can thus be tested using
simulation-based identifiability.

probabilistic models as code. Many of these languages support automatic differentiation

and gradient-based optimization [16, 24, 28, 31], providing the necessary utilities for our

optimization-based approach. While some languages contain an explicit representation

of interventions [16, 99, 124, 137], none currently address causal identifiability.

6.2 Identifiability in Bayesian Causal Inference

In this work we are interested in understanding the key asymptotic properties of

the posterior distribution over causal effects, p(Q|V), namely whether posterior mass

concentrates around the true causal effect assymptotically. In other words, can the

causal effect be identified from data? We define η-identifiability in this setting as

follows:

Definition 6.2.1. η-identifiability. Let (F̃, Ũ) be a set of structural functions

and latent confounders in the support of the prior, p(F,U). Then, a causal query,

Q, is η-identifiable given (F̃, Ũ) if for a dataset of n instances, Ṽ ∼ p(V|F̃, Ũ),

102

P (|Q̃ − Q| ≤ η|Ṽ) → 1 for some η ∈ R+ almost surely as n → ∞, where Q̃ is the

causal effect induced by (F̃, Ũ, Ṽ).1

Even though Definition 6.2.1 is given in terms of an intractable posterior distribu-

tion, determining whether a causal effect is η-identifiable does not require computation

or approximation of the posterior directly. Instead, we show that a causal query is

η-identifiable if and only if there do not exist a set of maximum likelihood structural

functions and latent confounder in the support of the prior, (F′,U′), that induce causal

effects that differ from (F̃, Ũ) by more than η.

First, we prove a lemma that the likehood ratio uniformly converges to 0 or 1

asymptotically for any pair of SCMs.

Lemma 6.2.1. For all (F̃, Ũ), (F′,U′) in the support of p(F,U), p(Ṽ|F′,U′)/p(Ṽ|F̃, Ũ)

converges uniformly to 0 or 1 almost surely as n→∞, where Ṽ ∼ p(Ṽ|F̃, Ũ).

Proof. Let ri(F′,U′) := p(Ṽi|F′,U′)/p(Ṽi|F̃, Ũ) ≤ 1 for a single data instance Ṽi.

As each element of ε is assumed to be independent and identically distributed, then

ri(F′,U′) = rj(F′,U′) = r(F′,U′) for all i, j ∈ [[n]]. Therefore, E[p(Ṽ|F′,U′)/p(Ṽ|F̃, Ũ)] =

r(F′,U′)n for n i.i.d data instances. As 0 ≤ r(F′,U′) ≤ 1, r(F′,U′)n → 0 or 1 uniformly

as n→∞. By the weak law of large numbers, we have that p(Ṽ|F′,U′)/p(Ṽ|F̃, Ũ)→ 0

or 1 almost surely for all (F̃, Ũ), (F′,U′) in the support of p(F,U) as n→∞.

Theorem 6.2.2. Q is η-identifiable given (F̃, Ũ) if and only if for a dataset of n

instances, Ṽ ∼ p(V|F̃, Ũ), there does not exist an (F′,U′) such that p(Ṽ|F′,U′) =

p(Ṽ|F̃, Ũ), |Q̃−Q′| > η, and p(F′,U′)/p(F̃, Ũ) > 0 almost surely as n→∞. Here, Q̃

and Q′ are the causal effects induced by (F̃, Ũ, Ṽ) and (F′,U′, Ṽ) respectively.

Proof. Let A′ and Ã be the set of (F,U) that induce the same effect as (F′,U′) and

(F̃, Ũ) respectively and let L be the set of (F,U) that maximize the likelihood of the

1Importantly, p(Q̃|Ṽ) marginalizes over (F,U), and does not condition on the “known” (F̃, Ũ).

103

data asymptotically, i.e. {(F,U) ∈ supp(p(F,U)) : p(Ṽ|F,U)

p(Ṽ|F̃,Ũ)
→ 1 as n→∞}. To show

that Q is η-identifiable only if there does not exist such an (F′,U′), we have that for

all (F′,U′) in the support of p(F,U)):

lim
n→∞

p(Q′|Ṽ) = lim
n→∞

1

p(Ṽ)

∫
(F,U)∈A′

p(Ṽ|F,U)p(F,U)dFdU

= lim
n→∞

p(Ṽ|F̃, Ũ)

p(Ṽ)

∫
(F,U)∈A′

p(Ṽ|F,U)

p(Ṽ|F̃, Ũ)
p(F,U)dFdU

=

(
lim
n→∞

p(Ṽ|F̃, Ũ)

p(Ṽ)

)∫
(F,U)∈A′

lim
n→∞

p(Ṽ|F,U)

p(Ṽ|F̃, Ũ)
p(F,U)dFdU

=

(
lim
n→∞

p(Ṽ|F̃, Ũ)

p(Ṽ)

)∫
(F,U)∈A′∩L

lim
n→∞

p(F,U)dFdU

Here, the limit can be moved inside the integrand by the bounded convergence

theorem, as p(Ṽ|F,U)

p(Ṽ|F̃,Ũ)
p(F,U) converges uniformly to p(F,U) or 0. Therefore, we have

that:

lim
n→∞

p(Q′|Ṽ)

p(Q̃|Ṽ)
=

∫
(F,U)∈A′∩L limn→∞ p(F,U)dFdU∫
(F,U)∈Ã∩L limn→∞ p(F,U)dFdU

> 0 if and only if A′ ∩ L 6= ∅

Therefore, if there exists an (F′,U′) ∈ A′ ∩ L such that |Q′ − Q̃| > η, then Q is

not η-identifiable. If no such (F′,U′) exists, then Q is η-identifiable.

Definition 6.2.1 describes identifiability with respect to a single instantiation,

(F̃, Ũ). Instead, we would like to make statements about whether causal effects can

be uniquely identified with high probability across SCMs sampled from the prior.

Let ID(F̃, Ũ, η) be a function that returns 1 if Q is η-identifiable given (F̃, Ũ) under

Definition 6.2.1, and 0 otherwise. Then, we define (ζ, η)-identifiability as follows:

104

Definition 6.2.2. (ζ, η)-identifiability. For some 0 ≤ ζ ≤ 1, η ∈ R+, a causal

query, Q, is (ζ, η)-identifiable given a prior distribution p(F,U) if the probability

that Q is η-identifiable given a (F̃, Ũ) ∼ p(F,U) is greater than or equal to ζ, i.e.

ζ ≤
∫

ID(F̃, Ũ, η) dp(F̃, Ũ).2

6.2.1 Example: Confounded Linear Model

Here, we illustrate the Bayesian approach with a linear parametric example over

observed V = {t,y} and latent U = {u} and X = {εt, εy}, which is a simplified

version of the example in Section 5 of [30]. This example corresponds to the graphical

structure shown in Figure 6.1a. Here, the structural causal model is parameterized by

θ = {γ, β, α, σ2
u, σ

2
t , σ

2
y}. Assume the following parameterized SCM:

ui ∼ N (0, σ2
u) ti = γui + εti yi = βti + αui + εyi

εti ∼ N (0, σ2
t) εyi

∼ N (0, σ2
y)

Let our causal query again be the sample average treatment effect (SATE), i.e.

Q(y,y(t)) = β(t−
∑n

i=1 ti). In this setting, estimating the causal effect reduces to

estimating β. As shown in [30], for all Ṽ in the support of p(V) there exists a set of

parameters Θ such that for all θ(1), θ(2) ∈ Θ, β(1) 6= β(2) and p(Ṽ|θ(1)) = p(Ṽ|θ(2)). In

summary, the induced linear system of equations relating parameters to the observable

covariance between t and y is rank deficient, leading to non-uniqueness of the maximum

likelihood solution. This implies that the posterior odds ratio, p(β(1)|Ṽ)/p(β(2)|Ṽ),

reduces to the prior odds ratio, p(β(1))/p(β(2)), regardless of n [138]. It follows

straightforwardly that given any non-degenerate prior, p(θ), Q is therefore not (ζ, η)-

2The standard Definition 3.2.4 in (Pearl, 2009) is equivalent to our Definition 6.2.2 with η =
0, ζ = 1.

105

Algorithm 4 Simulation-Based Identifiability (SBI)

1: procedure SBI(p(F,U,V), Q, η, ζ)
2: parameters: m, SCM samples; n; dataset size; k, data samples; λ, repulsion strength,

α, significance level
3: for i = 1 to m do
4: F̃i, Ũi ∼ p(F,U) . Sample structural functions and confounder instances.
5: for j = 1 to k do
6: Ṽi,j ∼ p(V|F̃i, Ũi) . Sample n observations from the i’th SCM.
7: ∆Q̂i,j ← Optimize L(·, Ṽi,j ;λ)

. Using stochastic gradient descent. See Equation 6.1
8: end for
9: µ̂i ←

∑k
j=1 ∆Q̂i,j/k . Compute sample mean for i’th SCM

10: Ŝi ←
∑k

i=1(µ̂i −∆Q̂i,j)
2/(k − 1) . Compute sample variance for i’th SCM

11: end for
12: l0 ← maxζ′∈[0,ζ]

∑m
i=1 log(N (µ̂i; min(µ̂i, η), Ŝi/k)ζ ′ +N (µ̂i; max(µ̂i, η), Ŝi/k)(1− ζ ′))

. Null log likelihood
13: la ← maxζ′∈[0,1]

∑m
i=1 log(N (µ̂i; min(µ̂i, η), Ŝi/k)ζ ′ +N (µ̂i; max(µ̂i, η), Ŝi/k)(1− ζ ′))

. Alternative log likelihood
14: return TRUE if χ2(2(la − l0); 1) < α else return FALSE

. Chi-squared test of statistical significance

identifiable for any 0 ≤ ζ ≤ 1, η ∈ R+. This conclusion agrees with known parametric

identification results [97].

6.3 Simulation-Based Identifiability

For the linear example in Section 6.2.1, we were able to relate the observable

covariance between t and y to the latent parameters θ algebraically. However, it is

not clear how we might derive similar results for nonlinear structural functions in

general. Instead, we propose an approach for determining causal identifiability using a

particle-based optimization scheme which we call simulation-based identifiability (SBI).

In summary, SBI uses gradient-based search to find two sets of maximum likelihood

structural functions and latent confounders in the support of p(F,U), (F(1),U(1)) and

(F(2),U(2)), that induce different causal effects, Q(1) and Q(2), respectively. Let λ ∈ R+

106

be a hyperparameter and ∆Q := |Q(1) −Q(2)|. Then, consider the following objective

function:

L(F(1),U(1)︸ ︷︷ ︸
SCM 1

,F(2),U(2)︸ ︷︷ ︸
SCM 2

, Ṽ︸︷︷︸
Data

;λ) = log p(Ṽ|F(1),U(1))︸ ︷︷ ︸
SCM 1 log likelihood

+ log p(Ṽ|F(2),U(2))︸ ︷︷ ︸
SCM 2 log likelihood

+ λ∆Q︸ ︷︷ ︸
Repulsion

(6.1)

Let F̂(1), Û(1), F̂(2), Û(2) denote a solution that maximizes L, and let ∆Q̂ be the

corresponding optimal ∆Q.

To prove that SBI is asymptotically sound and complete we first prove that the

optimal solutions to L are almost surely maximum likelihood solutions, and that

Q̂ is almost surely the maximum distance between causal effects among maximum

likelihood solutions. Recall that (F̂(1), Û(1)) and (F̂(2), Û(2)) are solutions that maximize

L.

Lemma 6.3.1. For a dataset of n instances Ṽ ∼ p(Ṽ|F̃, Ũ), p(Ṽ|F̂(1), Û(1)) and

p(Ṽ|F̂(2), Û(2)) converge to p(Ṽ|F̃, Ũ) almost surely as n→∞.

Proof. Without loss of generality, toward a contradiction assume that p(Ṽ|F̂(1), Û(1)) 6→

p(Ṽ|F̃, Ũ) as n → ∞. Therefore, by Lemma 6.2.1 we have that p(Ṽ|F̂(1),Û(1))

p(Ṽ|F̃,Ũ)
→ 0 as

n→∞. Therefore:

L(F̂(1), Û(1), F̂(2), Û(2)) ≥ L(F̃, Ũ, F̃, Ũ) (6.2)

log p(Ṽ|F̂(1), Û(1)) + log p(Ṽ|F̂(2), Û(2)) + λ∆Q̂ ≥ 2 log p(Ṽ|F̃, Ũ) + λ|Q̃− Q̃| (6.3)

≥ 2 log p(Ṽ|F̃, Ũ) (6.4)

Or equivalently, as n→∞:

107

0 ≤ log p(Ṽ|F̂(1), Û(1)) + log p(Ṽ|F̂(2), Û(2)) + λ∆Q̂− 2 log p(Ṽ|F̃, Ũ) (6.5)

≤ log
p(Ṽ|F̂(1), Û(1))

p(Ṽ|F̃, Ũ)
+ log

p(Ṽ|F̂(2), Û(2))

p(Ṽ|F̃, Ũ)
+ λ∆Q̂ (6.6)

≤ log(0) + log
p(Ṽ|F̂(2), Û(2))

p(Ṽ|F̃, Ũ)
+ λ∆Q̂ = −∞ (6.7)

which is a contradiction.

Lemma 6.3.2. For a dataset of n instances Ṽ ∼ p(Ṽ|F̃, Ũ), ∆Q̂→ max(F(1),U(1)),(F(2),U(2))∈L ∆Q

almost surely as n→∞.

Proof. Toward a contradiction assume that there exists some (F′(1),U′(1),F′(2),U′(2))

such that L(F′(1),U′(1),F′(2),U′(2)) ≤ L(F̂(1), Û(1), F̂(2), Û(2)) and ∆Q′ > ∆Q̂. By

Lemmas 6.2.1 and 6.3.1, we have that as n→∞, p(Ṽ|F′(1),U′(1)) = p(Ṽ|F′(2),U′(2)) =

p(Ṽ|F̂(1), Û(1)) = p(Ṽ|F̂(2), Û(2)) = p(Ṽ|F̃, Ũ). Therefore, by definition of L, we have

the following as n→∞:

L(F′(1),U′(1),F′(2),U′(2)) ≤ L(F̂(1), Û(1), F̂(2), Û(2)) (6.8)

2 log p(Ṽ|F̃, Ũ) + λ∆Q′ ≤ 2 log p(Ṽ|F̃, Ũ) + λ∆Q̂ (6.9)

∆Q′ ≤ ∆Q̂ (6.10)

which is a contradiction.

The following asymptotic theorems hold for any λ ∈ R+ and bounded Q:

Theorem 6.3.3. A causal query Q is η-identifiable given (F̃, Ũ) for a dataset of n

instances, Ṽ ∼ p(V|F̃, Ũ), if ∆Q̂ ≤ 2η and only if ∆Q̂ ≤ η almost surely as n→∞.

Proof. By Lemma 6.3.1 we have that (F̂(1), Û(1)) and (F̂(2), Û(2)) are in L, i.e. the set

of functions that maximize the log likelihood of the data asymptotically. Therefore,

if |Q̂(1) − Q̂(2)| > 2η, then at least one of (F̂(1), Û(1)) or (F̂(2), Û(2)) are a (F′,U′) that

108

satisfy Theorem 6.2.2. By Lemma 6.3.2 we have that |Q̂(1) − Q̂(2)| maximizes the

distance between induced causal effects. Therefore, if |Q̂(1) − Q̂(2)| < η as n→∞, no

such (F′,U′) exists. Note that if η < |Q̂(1) − Q̂(2)| < 2η we can not conclude whether

Q is η-identifiable, as the true causal effect Q̃ may be within η of either or neither of

Q̂(1) or Q̂(2).

Theorem 6.3.4. A causal query Q is (ζ, η)-identifiable given a prior p(F,U) for m

samples of functions and confounders, F̃i, Ũi ∼ p(F,U), and m datasets of n instances,

Ṽi ∼ p(V|F̃i, Ũi), if ζ <
∑m

i=1 1∆Q̂i>2η and only if ζ <
∑m

i=1 1∆Q̂i>η
almost surely as

n,m→∞.

Proof. Theorem 6.3.4 follows directly from the weak law of large numbers applied to

the results of Theorem 6.3.3.

6.3.1 Likelihood Ratio Test

Theorems 6.3.3 and 6.3.4 provide necessary and sufficient conditions for determining

identifiability in the limit of infinite simulations given exact solutions to L. However,

given finite n and m and approximate solutions to L, ∆Q̂ may be large even if the

query is identifiable. To address the problem of finite n and m we propose a likelihood

ratio hypothesis test using gradient-based approximate solutions to L. The details of

this procedure are shown in Algorithm 4, which works as follows. Repeatedly sample

a set of functions and latent confounders, (F̃, Ũ), from the prior. For each, repeatedly

sample a set of observations, Ṽ, and optimize L jointly for two SCMs, resulting in an

approximately optimal ∆Q̂ for the simulated data. Then, apply a likelihood ratio test

to determine if the distance between particles is statistically significantly greater than

η with probability ζ. For finite k, where the central limit theorem does not provide

an exact description of the distribution of the sample mean µ̂i, this procedure is best

described as an approximate test.

109

Recall that ID(F̃, Ũ, η) is a function that returns 1 if Q is η-identifiable given

(F̃, Ũ) under Definition 6.2.1, and 0 otherwise. Additionally, recall that µ̂i is the

sample-averaged ∆Q̂ across k datasets drawn from p(V|F̃i, Ũi) with n instances.

Let ζ ′ be the true (unknown) probability that ID(F̃, Ũ, η) = 1 for (F̃, Ũ) ∼ p(F,U),

let Ho be the null hypothesis that Q is not (ζ, η)-identifiable, i.e. ζ ′ < ζ, Ha be

the alternative hypothesis that Q is (ζ, η)-identifiable, i.e. ζ ′ ≥ ζ, and let IDη,i be

shorthand for ID(F̃i, Ũi, η).

To construct a likelihood ratio test, we evaluate the maximum of the log data

likelihood (here over observed data µ̂i) in the set of parameters in the null hypothesis,

denoted l0, and given the full union of parameters in the null and alternative hypotheses,

denoted la. If the difference between these two quantities is significantly large, i.e.

χ2(2(la − l0); 1) < α, then we reject the null hypothesis. Intuitively, this test fails to

reject the null if adding additional degrees of freedom to the parameter space (here by

allowing ζ < ζ ′ < 1) does not substantially change the maximum of the likelihood.

The following expression gives the maximum of the likelihood for the parameters

in the null hypothesis. Here, the likelihood is given with respect to parameters

θ = {ζ ′, µ̄ID,1, ..., µ̄ID,k, µ̄nID,1, ..., µ̄nID,k}. The space of parameters under the null, Θ0,

is defined such that 0 < ζ ′ < ζ, µ̄ID,1, ..., µ̄ID,k are in [0, η], and µ̄nID,1, ..., µ̄nID,k are in

(η,∞). Here, µ̄ID,i and µ̄nID,i represent the true (unknown) centers for Q̂ for the i’th

SCM when IDη,i = 1 or 0 respectively. The space of parameters under the alternative

hypothesis, Θa, is identical, except that ζ < ζ ′ < 1.

110

l0 := max
θ∈Θ0

log p(µ̂1, ..., µ̂k|θ)

= max
θ∈Θ0

log
m∏
i=1

p(µ̂i|θ)

= max
θ∈Θ0

m∑
i=1

log(p(µ̂i|IDη,i = 1, θ)p(IDη,i = 1|θ) + p(µ̂i|IDη,i = 0, θ)p(IDη,i = 0|θ))

= max
θ∈Θ0

m∑
i=1

log(N (µ̂i; µ̄ID,i,Σi)p(IDη,i = 1|ζ ′) +N (µ̂i; µ̄nID,i,Σi)p(IDη,i = 0|ζ ′))

= max
ζ′∈[0,ζ]

m∑
i=1

log(N (µ̂i; min(µ̂i, η),Σi)ζ
′ +N (µ̂i; max(µ̂i, η),Σi)(1− ζ ′))

(6.11)

Note that the maximum likelihood value of µ̄ID,i and µ̄ID,i is given by the closest

value to µ̂ in their respective set of possible assignments, resulting in the min(µ̂i, η)

and max(µ̂i, η),Σi) expressions in the final equation above. By a similar argument, la

is given by the following expression.

la := max
θ∈Θ0∪Θa

log p(µ̂1, ..., µ̂k|θ)

= max
ζ′∈[0,1]

m∑
i=1

log(N (µ̂i; min(µ̂i, η),Σi)ζ
′ +N (µ̂i; max(µ̂i, η),Σi)(1− ζ ′))

(6.12)

Theorem 6.3.5. For convex L, Algorithm 4 approaches the most powerful exact test

with significance α as n, k →∞.

Proof. Theorem 6.3.5 follows directly from the Neyman-Pearson lemma [90] and

Theorem 6.3.4.

While gradient-based optimization is not guaranteed to escape local optima, our

many experiments in Section 6.4 suggest that SBI is robust even when L is non-convex

and for finite n, m, and k. SBI correctly determines identifiability for all six of our

latent variable model benchmarks, which we strongly suspect all have non-convex

likelihoods. We believe that approximate solutions to L are reliable in practice for two

111

100 200 300 400 500 600
Dataset size (n)

10−2

10−1

100

∆
Q̂

Confounded

Bivariate

(a) Gaussian Process

0 10 20 30 40 50
Epoch

100

10−1

10−2

10−3

10−4

∆
Q̂

Confounded

Frontdoor

Instrumental Variable

Regression Discontinuity
Within
Subjects

Bivariate
Backdoor

Confounded

Frontdoor

Instrumental Variable

Regression Discontinuity
Within
Subjects

Bivariate
Backdoor

(b) Linear Training Curves

0 10 20 30 40 50
Epoch

100

10−1

10−2

∆
Q̂

Confounded

Frontdoor
Instrumental Variable

Regression Discontinuity

Within Subjects
Bivariate

Backdoor

(c) GP Training Curves

Figure 6.2: Summaries of particle-based optimization. As the simulated dataset size
increases the difference between effect estimates of the two particles (∆Q̂) remains large for
the confounded Gaussian process model (a), indicating that the model is not identifiable.
Without confounding however, the optimized particles converge to the same causal effect.
Using gradient-based optimization, SBI is able to discover likelihood equivalent causal models
when they exist that induce different effects for linear (b) and Gaussian process (c) models.

reasons. First, SBI aggregates m · k independent runs of gradient-based optimization

on simulated data in its statistical test. For example, even though 14 of the 5000

trajectories had ∆Q̂ > η, SBI concluded that SATE for the linear IV benchmark is

identifiable. Second, SBI uses stochastic gradients and modern optimizers (e.g., Adam)

that are known to escape local optima in non-convex high-dimensional settings.

While the choice of repulsion strength, λ, does not influence our asymptotic results,

this is not generally the case for any finite n. In our experiments in Section 6.4, we

find that even small values of λ produce large ∆Q̂ for non-identifiable models.

6.3.2 Example: Confounded Gaussian Process

Let us again consider the confounded model in Section 6.2.1, instead assuming

that the function yi = f(ti, ui, εyi
) is drawn from the following Gaussian process

prior over yi = µy(ti, ui) + σ2
yεyi

, where D ∈ N, µy = [µy(t1, u1), ..., µy(tn, un)], and

W = {σ2
y,w0,w1,1, ...,w4,1, ...,w1,D, ...,w4,D}:

µy(ti, ui) = w0 +
D∑
d=1

w1,d sin(dti) + w2,d cos(dti) + w3,d sin(dui) + w4,d cos(dui) (6.13)

112

This Gaussian process model is known as the Fourier model, where the choice of

D and the prior p(W) dictate the characteristics of the sampled functions [104]. In this

and all subsequent experiments we setD = 10, w0 ∼ N (0, 1), and w1,d,w2,d,w3,d,w4,d
iid∼

N (0, 1/d2). This choice of prior results in relatively smooth functions, as the weights

on higher-order terms are typically close to 0. Again, let the causal query, Q, be

the sample average treatment effect with the intervention do(ti = t′). Then the log

likelihood and the difference between causal effects are given by the following:

log p(V|F,U) = logN (t; γu, σ2
t I) + logN (y;µy, σ

2
yI) (6.14)

∆Q =
D∑
d=1

|w(1)
1,d − w

(2)
1,d| sin(dt′) + |w(1)

2,d − w
(2)
2,d| cos(dt′) (6.15)

Given this expressions for the log likelihood and the causal query in terms of param-

eters, θ, and latent confounders, U, we can now compute the partial derivative of the

particle-based objective function, ∂
∂s
L = ∂

∂s
log p(Ṽ|F(1),U(1)) + ∂

∂s
log p(Ṽ|F(2),U(2)) +

λ ∂
∂s

∆Q with respect to all s ∈ θ ∪ U. Given an expression for each partial derivative,

we can then apply standard gradient-descent algorithms to determine identifiability

using SBI. Without loss of generality, the derivative of the repulsion term with respect

to s for F(1), U(1) is given by the following:

∂

∂s
∆Q =

w
(1)
1,d − w

(2)
1,d

|w(1)
1,d − w

(2)
1,d|

sin(dt′) s = w
(1)
1,d

w
(1)
2,d − w

(2)
2,d

|w(1)
1,d − w

(2)
2,d|

cos(dt′) s = w
(1)
2,d

0 otherwise

(6.16)

113

For the derivative of the log density we expand on standard identities of Gaus-

sians, where LV, Lt, and Ly are shorthand for log p(V|F(1),U(1)), log p(t|γu, σ2
t I), and

logN (y;µy, σ
2
yI) respectively:

∂LV

∂s
=
∂Lt
∂s

+
∂Ly
∂s

(6.17)

∂Lt
∂s

=
1

σ2
t

n∑
i=1

(ti − γui)
∂γui
∂s
− ∂σ2

t

∂s

1

2σ2
t

(
n− 1

σ2
t

) n∑
i=1

(ti − γui)
2 (6.18)

∂Ly
∂s

=
1

σ2
y

n∑
i=1

(yi − µy(ti, ui))
∂µy(ti, ui)

∂s
−
∂σ2

y

∂s

1

2σ2
y

(
n− 1

σ2
y

) n∑
i=1

(yi − µt(ti, ui))2

(6.19)

∂γui
∂s

=

ui s = γ

γ s = ui

0 otherwise

∂σ2
t

∂s
=

1 s = σ2

t

0 otherwise

∂σ2
t

∂s
=

1 s = σ2

t

0 otherwise

∂µt(ti, ui)

∂s
=

1 s = w0

sin(dti) s = w1,d

cos(dti) s = w2,d

sin(dui) s = w3,d

cos(dui) s = w4,d

d(w3,d cos(dti)

− w4,d sin(dti))
s = ui

0 otherwise

Note that although deriving these gradients is cumbersome and error-prone in

general, it can be easily automated using standard automatic differentiation procedures.

114

Design Prior ∆Q̂SBI ∆Q̂PL ∆Q̂MH IDTruth IDSBI IDPL IDMH IDDAG

Unconfounded
Linear .00 ± .00 .11 ± .01 .12 ± .03 33333333333333333 33333333333333333 77777777777777777 77777777777777777 33333333333333333

GP .01 ± .00 .34 ± .02 .26 ± .06 33333333333333333 33333333333333333 77777777777777777 77777777777777777 33333333333333333

Confounded
Linear .83 ± .15 1.8 ± .34 .14 ± .03 77777777777777777 77777777777777777 77777777777777777 77777777777777777 77777777777777777

GP .50 ± .28 .73 ± .14 .38 ± .08 77777777777777777 77777777777777777 77777777777777777 77777777777777777 77777777777777777

Backdoor
Linear .00 ± .00 .10 ± .01 .11 ± .02 33333333333333333 33333333333333333 77777777777777777 77777777777777777 33333333333333333

GP .01 ± .00 .28 ± .02 .26 ± .05 33333333333333333 33333333333333333 77777777777777777 77777777777777777 33333333333333333

Frontdoor
Linear .06 ± .04 .17 ± .05 .37 ± .13 33333333333333333 33333333333333333 77777777777777777 77777777777777777 33333333333333333

GP .02 ± .01 .20 ± .09 .34 ± .17 33333333333333333 33333333333333333 77777777777777777 77777777777777777 33333333333333333
Instrumental Linear .01 ± .01 .05 ± .01 .13 ± .06 33333333333333333 33333333333333333 33333333333333333 77777777777777777 33333333333333333

variable GP .01 ± .00 .37 ± .03 .40 ± .08 33333333333333333 33333333333333333 77777777777777777 77777777777777777 77777777777777777
Within Linear .00 ± .00 .10 ± .01 .14 ± .03 33333333333333333 33333333333333333 77777777777777777 77777777777777777 77777777777777777
subject GP .01 ± .01 .39 ± .04 .26 ± .06 33333333333333333 33333333333333333 77777777777777777 77777777777777777 77777777777777777

Regression Linear .00 ± .00 .16 ± .01 .21 ± .03 33333333333333333 33333333333333333 77777777777777777 77777777777777777 33333333333333333
discontinuity GP 1.1 ± .12 1.1 ± .09 .82 ± .1 77777777777777777 77777777777777777 77777777777777777 77777777777777777 33333333333333333

Table 6.2: Empirical results on quasi-experimental design benchmarks. Simulation-
based identifiability (this chapter) correctly determines the identifiability of sample average
treatment effects for all fourteen of the benchmark linear and Gaussian process (GP)
quasi-experimental designs. Lower ∆Q̂ implies identifiability. The columns labeled ID
show whether SBI and the baselines determine the design to be statistically significantly
identifiable. Neither of the profile likelihood (PL) or the Metropolis Hastings (MH) baselines
consistently determine identifiability. The column labeled IDDAG presents the results of the
do-calculus [93] for GP benchmarks, and IC [69] for linear benchmarks applied (incorrectly)
to the underlying causal graphs, despite the fact that they do not account for all of the
parametric restrictions. This comparison is only to illustrate the effect of parametric
restrictions on identifiability.

Figure 6.2a shows the results of Algorithm 4 with this prior over structural causal

models using the Adam gradient descent algorithm [67] to optimize L. Unlike the

unconfounded model, which is identical except that U has been omitted, we conclude

that the confounded model is not identifiable. We expand on these examples in

Section 6.4.

6.4 Experiments

We evaluated SBI on a benchmark suite of priors reflecting seven standard causal

designs which are summarized in Table 6.1; unconfounded regression, confounded

regression, backdoor adjusted, frontdoor adjusted, instrumental variable, within-

115

subjects, and regression discontinuity designs. For each of these seven benchmarks

we tested SBI using a linear parameterization (e.g. Section 6.2.1) as well as a

parameterization where the outcome function is replaced with a finite dimensional

Gaussian process (e.g. Section 6.3.2). Additional experimental details and descriptions

of each prior are provided in Section A.2.

We compared SBI against two baselines, one which seeks to approximate the

full posterior directly using a Metropolis-Hastings based inference procedure (MH),

and one which uses a variation of profile likelihood (PL) identification [105], which

alternates between parameter perturbations and maximum-likelihood optimization.

We implemented Algorithm 4, all designs, and the baselines using Gen. Using m = 100,

n = 1000, k = 50, λ = 1, η = 0.1, ζ = 0.8, and α = 0.05, SBI correctly determines the

identifiability of all designs, performing significantly better than the two baselines. As

we formalized in Section 6.3, if ∆Q̂ is close to 0 then the causal query is identifiable.

Our experiments demonstrate that SBI agrees with the do-calculus in settings

where graph structure alone is sufficient, and produces correct identification results

for designs that previously required custom identification proofs. Finally, we present

the first known identification results for Gaussian process quasi-experimental designs,

demonstrating agreement with widely held intuition. See Table 6.2 for a summary of

SATE identification results.

6.4.1 Causal Graphical Models.

In addition to the unconfounded and confounded regression designs presented in

Section 6.3.2, we evaluated SBI on two models that are covered by the do-calculus,

backdoor-adjusted and frontdoor-adjusted designs. Backdoor-adjusted designs rep-

resent settings where all of the random variables that confound the relationship

between treatment and outcome are observed, blocking all backdoor paths. Unlike

backdoor-adjusted designs, frontdoor-adjusted designs can include latent confounding

116

X

Y

∆X

C
A

T
E

T = 1T = 0

X

Y

∆X

C
A

T
E

T = 1T = 0

1 10Basis functions

0.0

0.6

D
is

ta
nc

e
(∆
X

)

10−1

100

∆Q

(a) 1 basis function (b) 10 basis functions (c) Identifiability heatmap

Figure 6.3: Quantitative insight for conditional average treatment effects. SBI
provides novel and intuitive identification results for the Gaussian process regression dis-
continuity design benchmark. These results (c) show that conditional average treatment
effects (CATE) becomes less identifiable as we condition on covariates further from the
discontinuity (∆X > 0) and for less smooth outcome functions, i.e. increasing the number
of basis functions (a, b).

between treatment and outcome, as long as there exists an observed mediator that is

not confounded, as in Figure 6.1b. Despite this latent confounding, average treatment

effects are nonparametrically identifiable [97].

6.4.2 Linear Quasi-Experimental Designs.

Instrumental variable designs differ from the confounded design in that an observed

variable, known as the instrument, influences the treatment. Two conditions must be

satisfied to enable identification: (i) the instrument and the treatment must not be con-

founded; and (ii) all influence from the instrument to the outcome is mediated through

the treatment. While these assumptions can be expressed graphically, additional

parametric assumptions are needed for effects to be identifiable [97]. For example, if

exogenous noise is additive, then the average treatment effect is identifiable [52].

Within-subjects designs involve hierarchically structured data in which individual

instances (e.g., students) are affiliated with one of several objects (e.g., schools).

Treatment effects for these kinds of settings can be identified even if treatment

117

and outcome are confounded, as long as confounders are shared across all instances

belonging to the same object [138]. These designs can be described as the family of

structural causal models; ti = ft(uo(i), εti), yi = ft(ti, uo(i), εyi), where uo(i) refers to

the shared value of the latent confounder corresponding to instance i. Hierarchically

structured confounding is applicable to a wide variety of common causal designs [63]:

including twin studies [20], difference-in-differences designs [117], and multi-level-

modeling [43].

Regression discontinuity designs are quasi-experimental designs in which the

treatment depends on a particular observed covariate being above or below a known

threshold. We consider a sharp deterministic discontinuity, i.e. ti = 1 if xi > 0, and

ti = 0 otherwise. These regression discontinuity designs correspond to the family of

structural causal models xi = fx(εxi), ti = 1xi>0, and yi = ft(ti, xi, εti). Even though

all confounders are observed, the deterministic relationship between x and t violates

the positivity assumption, which is a necessary assumption for the do-calculus to be

sound [93]. Here, average treatment effects are identifiable for linear models, but not

nonparametrically.

6.4.3 Gaussian Process Quasi-Experimental Designs.

We used SBI to determine the previously unknown identifiability of Gaussian

process versions of quasi-experimental designs. By assuming a particular kernel we

place an inductive bias on the class of structural functions, which could in principle

enable identification. SBI instead confirms that the identifiability of these Gaussian

process models agrees with the literature on nonparametric identification.

We also evaluated SBI on the conditional average treatment effect (CATE) for

a Gaussian process version of the regression discontinuity design. For nonlinear

outcome functions, such as our Gaussian process, observations in one region of x

provide only partial information about counterfactuals in another. For example, in

118

Figure 6.3b the outcome function for untreated individuals (T = 0) to the right of

the discontinuity (dashed blue curve) is only one of many that are compatible with

observed data. Therefore, we should expect that CATE is more ambiguous further

from the discontinuity and for less smooth functions. SBI’s results in Figure 6.3c agree

with this intuition, demonstrating that ∆Q increases as we condition on covariates

further from the discontinuity and as we increase the number of basis functions.

6.5 Discussion

In this chapter we demonstrated how SBI can be used to test the identifiability of

Bayesian models for causal inference. While determining identifiability is particularly

salient in these causal settings, it can also be valuable in non-causal settings as a part

of a holistic modeling workflow [46], supplementing other introspection tools such as

simulation-based calibration [123].

In addition to determining identifiability, SBI can be used as a kind of sensitivity

analysis [42, 66, 109], bounding the range of causal effects that are likelihood equivalent.

Our regression discontinuity design results shown in Figure 6.3c emphasize this

capability, showing that irreducible uncertainty in effect estimates increases with

increasing distance from the discontinuity and with less smooth outcome functions.

Our benchmarks encode strong parametric assumptions about latent confounders

and exogenous noise. If desired, users may represent broader uncertainty using hy-

perpriors. To demonstrate this, we ran a version of the confounded GP model with

additional hyperpriors over the mean and variance of u. See the supplementary mate-

rials for details. As another example, one could relax additive noise assumptions using

Bayesian versions of invertible neural networks [32], which satisfy SBI’s requirements

that the likelihood be differentiable and that counterfactual outcomes (and thus Q)

are fully determined by (F,U,V).

119

SBI builds on a long history of optimization-focused machine learning research.

Reducing identifiability to optimization in this way provides a path towards reasoning

about Bayesian models for causal inference at previously unattainable scales. However,

this reduction means that SBI’s conclusions are dictated by the performance of an

approximate global optimization method. Formally quantifying the implications of

this approximation error, and extending SBI to discrete combinatorial causal models

(e.g. causal discovery) are important areas of future work.

120

CHAPTER 7

CONCLUSION

In this Chapter I summarize the contributions made in this thesis, and explore

opportunities for future work.

7.1 Summary of Contributions

In this thesis, I presented the Bayesian structural approach to causal inference,

and discussed how it could be realized using probabilistic programming languages.

In Chapter 3, I presented a concise mathematical description of the Bayesian

structural approach to causal inference and showed how a linear example could be

implemented as a probabilistic program. I illustrated how various modeling choices

influence our ability to draw causal conclusions and how these modeling choices can

be straightforwardly reflected in the source code of probabilistic programs.

In Chapter 4, I presented an advanced application of the Bayesian structural

approach to causal inference, combining richly structured assumptions about how

latent confounders are shared between observed data instances with flexible Bayesan

nonparameteric Gaussian process priors over structural functions. I showed empirically

that this model, GP-SLC, achieves state-of-the-art effect estimation on a collection of

synthetic and semi-synthetic benchmarks.

In Chapter 5, I presented a simple extension of the Bayesian structural approach

to causal inference for reasoning with a combination of observational and experimental

data. Building on the insight from Chapter 3 that programs are a compact and

convenient representation for causal assumptions, I showed how composing syntactic

121

program transformations with a causal language interpreter embedded in a probabilistic

programming language makes this expanded capability remarkably straightforward.

In Chapter 6, I presented Simulation-Based Identifiability (SBI), an approach for

determining if a Bayesian structural causal model yields unique causal conclusions

asymptotically given data. SBI reduces the problem of causal identifiability to a

particle-based optimization problem, which can be solved approximately with gradient-

based search. I proved that SBI is asymptotically sound and complete in the limit of

infinite simulations and exact solutions to the particle-based optimization problem.

For the case with finite simulations, I presented a custom likelihood ratio hypothesis

test and proved that it is the most powerful exact test in the sample limit. Finally,

on an extensive suite of linear and Gaussian process benchmarks I show that SBI

correctly determines the identifiability for seven graph-based and econometric causal

designs. No other automated method provides such coverage.

7.1.1 Key Claims Restated

Taken together, these contributions provide evidence for five key claims about the

Bayesian structural approach to causal inference, first introduced in Chapter 1. I

restate those claims here. For details on how the specific chapters provide evidence

for each claim see Section 1.1.2.

Claim 1. The Bayesian structural approach provides an expressive substrate for

representing practical assumptions for causal inference that can not be expressed using

graph structure alone.

Claim 2. A large and diverse collection of qualitative findings scattered throughout

the causal inference literature emerge as a consequence of the Bayesian structural

approach to causal inference.

Claim 3. The Bayesian structural approach can be used to represent broad uncertainty

over structural functions, and to learn complex nonlinear dependencies from data.

122

Claim 4. The Bayesian structural approach can provide valuable insight into causal

inference problems even without exact probabilistic inference, which is NP-hard in

general.

Claim 5. The Bayesian structural approach provides a computational foundation on

which a software engineering discipline of causal inference can be constructed; enabling

modular, composable, and extensible causal inference software artifacts.

7.2 Future Work

In this thesis, I presented the Bayesian structural approach to causal inference

with probabilistic programming. In doing so I contributed: (i) advanced Bayesian

nonparameteric models for causal inference in richly structured domains [134]; (ii)

methods for combining observational and experimental data [137]; and (iii) a general

meta-reasoning technique for determining whether causal assumptions are sufficient

for drawing causal conclusions [135]. While these serve as important steps towards

the larger vision of fully featured causal probabilistic programming languages, as well

as software engineering disciplines of causal probabilistic programming, more work is

needed. In this final section, I discuss some exciting opportunities for future work in

this area. These opportunities fall into two distinct categories: (i) language design;

and (ii) applications.

7.2.1 Causal Probabilistic Programming Language Design

Automating Program Transformations. In Chapter 3, I showed how the Gen

probabilistic programming language could be used to represent Bayesian structural

causal models by composing a prior over probabilistic structural causal models with

an intervention program transformation to induce a joint distribution over factual and

counterfactual outcomes, and thus also over causal queries of interest. However, in

doing so I omitted important details about how to implement such an intervention, as

123

well as how to automate the reparameterization and inversion logic (see Section 3.2.8)

necessary to compute probability densities and their gradients that are often used

by approximate inference algorithms. In Chapter 5, I demonstrated one approach to

implementing such an intervention transformation using syntax rewriting in a restricted

domain specific language for causal inference. In our restricted language with no

recursion, loops, or other control, this was adequate, because any intervened random

variables could be transformed statically before the causal program was interpreted by

the embedded causal program interpreter. However, with more expressive control flow

constructs in the causal language, interventions will need to be applied dynamically

as the causal program is evaluated. Omega [124] is able to achieve the kind of

expressiveness we are interested in by lazily evaluating sampling statements for

random variables, but does so at the cost of losing tractable density evaluation. Design

a causal probabilistic programming language that support interventions in dynamic

models and leads to tractable inference is an exciting areas of future work.

Black-Box Abstractions for Causal Inference In Chapter 4 I showed how to

combine Bayesian nonparametric models such as Gaussian processes with rich causal

assumptions about how confounders are shared among instances. While these are

appealing model families, they pose somewhat of a problem for programming languages

that automate intervention program transformations. In our linear example, and in the

examples in Chapter 5, the probabilistic program implementation directly translates

to a straightforward intervention semantics. To implement an intervention we simply

apply the structural functions with new arguments, keeping exogenous noise between

factual and counterfactual worlds fixed. However, when using Gaussian processes the

code implementation obscures the interventional semantics, as implementations of

Gaussian processes rely on an equivalence between (i) sampling a structural function

from a prior and then applying that structural function to its arguments with the

tractable alternative of (ii) jointly sampling a collection of structural function outputs

124

from a multivariate Gaussian. In fact, the custom derivations of specialized distribu-

tions over counterfactuals in Section 4.3.2 were necessary exactly because we don’t

have access to structural functions, and thus could not intervene on them directly.

This example illustrates the somewhat awkward reality that interventions on some

models (such as the linear examples in Chapter 3) can be fully automated and require

no additional user-specified information, while others (such as the Gaussian process

models in Chapter 4) require user input. Therefore, if we want to permit these kinds

of Gaussian process models in a general purpose causal probabilistic programming

language, what interfaces or programming abstractions must we expose to enable it?

In other words, what is the causal analog to Gen’s generative function interface [28]

that will enable arbitrary causal model composition?

Beyond the somewhat niche area of Bayesian nonparametrics, this question (“What

are the necessary abstractions for causal inference?”) is generally important as causal

modeling continues to become more collaborative. With such an abstraction in hand,

distinct users could implement causal models in different host languages and with

different implementation strategies, while still enabling the kinds of composition we

expect in large-scale software engineering efforts.

7.2.2 Applications.

Dynamical Systems and Differential Equations. Throughout this thesis, I

have emphasized the expressive ability of the Bayesian structural approach to bring

the practice of causal inference closer to the needs of working scientists, policymakers,

or other analysts. However, I have thusfar omitted a substantial class of causal models,

those defined in terms of a sequence of (potentially stochastic) differential equations.

For many scientific endeavors, especially the physical sciences, differential equations

are a pervasive representation for mechanistic knowledge. While causal inference with

125

dynamical systems is an active area of research [18, 19, 110], the Bayesian approach

has promise for reasons we have discussed throughout this thesis.

Structure Learning and Program Synthesis. In Chapter 5, I presented ap-

proaches that enabled observational and experimental data to be combined to infer

whether a causal dependency exists, demonstrating a particularly simple form of struc-

ture learning using the Bayesian structural approach and probabilistic programming.

Scaling this problem up to realistic settings with many candidate structures is an

exciting, and daunting technical challenge. Doing so will inevitably require more

advanced inference algorithms, as the vanilla sequential Monte Carlo algorithm we

applied in Chapter 5 is unlikely to scale to the super-exponential collection of discrete

structures in a typical structure learning problem, let alone one with more expressive

programming constructs like loops and conditional branching. Future work could

explore how to leverage recent innovations in gradient-based optimization of directed

acyclic graph structures using continuous relaxations of acyclicity constraints [144],

although doing so is not trivial.

Hybrid Models. Perhaps the most exciting forward-looking opportunity for Bayesian

structural causal modeling with probabilistic programming is the ability to compose

multiple models from multiple stakeholders and experts, and yield causal inferences

that no individual model could provide. In fact, this setting where multiple seemingly

disparate models must be composed likely represents the majority of scientific modeling

efforts; unfortunately our existing formal computational machinery is ill equipped for

these realistic and important settings. Large-scale climate simulation, for example,

clearly requires a symphony of models at different time scales, spatial resolutions,

and levels of abstraction to yield actionable inferences. Our existing computational

tools for causal inference provide little insight in these rich settings. However, with

substantial efforts, the Bayesian structural approach might be able to fill in the gaps.

126

APPENDIX

ADDITIONAL EXPERIMENTAL DETAIL

A.1 Causal Inference Using Gaussian Processes with Struc-

tured Latent Confounding

In this section we provide additional detail on the baseline methods used in our

experiments in Chapter 4.

A.1.1 Baselines

The following structural equations summarize the data generating process for the

synthetic baselines:

Wj,k ∼ N (0, 1) for j, k ∈ [[3]]

Uo,j ∼ N (0, 0.5) for o ∈ [[no]], j ∈ [[3]]

Xi,j = W>
j,: ·Uo=pa(i),: + εxi where εxi ∼ N (0, 0.5I3) for i ∈ [[ni]]

ti = gt(Xi,:,Uo=pa(i),:) + εti where εti ∼ N (0, 0.5) for i ∈ [[ni]]

yi = gy(ti,Xi,:,Uo=pa(i),:) + εyi where εyi ∼ N (0, 0.5) for i ∈ [[ni]]

First, we draw U from a multivariate Gaussian distribution. Then, we generate

covariates X as linear combinations of U with additive exogenous noise. We generate

treatments t as a function (gt) of X and U with additive noise. Finally, we generate

outcome y as a function (gy) of X, t, and U with additive noise. For multi-dimensional

variables, X and U, we first apply the nonlinear function to each dimension of X and

U, then we aggregate them by summing across dimensions. The nonlinear treatment

and outcome functions are shown in Table A.1.

127

gt(Xi,:,Uo=Pa(i),:) gy(ti,Xi,:,Uo=Pa(i),:)

Add
∑

j Xi,j sin(Xi,j)−
∑

j Uo,j sin(Uo,j) ti sin(2ti) +
∑

j Xi,j sin(Xi,j) + 3
∑

j Uo,j sin(Uo,j)

Mult 1
10 (
∑

j Xi,j sin(Xi,j))(
∑

j Uo,j sin(Uo,j))
1
10 (ti sin(2ti))(

∑
j=1 Xi,j sin(Xi,j))(

∑
j Uo,j sin(Uo,j))

Table A.1: The functional form of t and y for 2 synthetic datasets with continuous
treatments and nonlinear outcome functions.

A.2 Simulation Based Identifiability

In this section we provide additional detail for the linear and Gaussian process

experiments in Chapter 6. For each of the seven designs we assume that treatment, t,

outcome, y, and where applicable covariates, x, and instruments, I, are observed. All

other random variables are latent.

For all of the experiments we used the Adam [67] algorithm to optimize L. We

ran Adam with α = 0.01, β1 = 0.9, and β2 = 0.999 for fifty epochs with a minibatch

size of ten instances. For all of the linear parametric experiments, we assume that

each function Vi = fV (Pa(V)i, εVi) = β · Pa(V)i + εVi , where each element of β

is drawn from a normal prior. Here, Pa(V)i refers to the vector of all latent and

observed arguments in the structural function, fV . All of the experiments, including

the Gaussian process models, assume that exogenous noise is normally distributed and

additive. For all of the Gaussian process experiments, we assume that each outcome

function yi = ft(Pa(Y), εyi) is drawn from the same Gaussian process prior described

in Section 6.3.2.

A.2.1 Linear Structural Causal Models

Here, we provide the full prior over linear structural causal models for each of the

seven designs in Table 1.

Unconfounded Regression.

128

βy ∼ N (1, 0.3) log(σ2
t) ∼ N (-1, 0.3) log(σ2

y) ∼ N (-3, 0.3)

εti
iid∼ N (0, σ2

t) εyi
iid∼ N (0, σ2

y) ti = εti

yi = βy · ti + εyi

Confounded Regression.

βt ∼ N (.5, 0.3) βy ∼ N ([1, .5]>, 0.3I) log(σ2
t) ∼ N (-1, 0.3)

log(σ2
y) ∼ N (-3, 0.3) ui

iid∼ N (0, 0.3) εti
iid∼ N (0, σ2

t)

εyi
iid∼ N (0, σ2

y) ti = βt · ui + εti yi = βy · [ti, ui] + εyi

Backdoor Adjusted.

βt ∼ N (.5, 0.3) βy ∼ N ([1, .5]>, 0.3I) log(σ2
x) ∼ N (-2, 0.3)

log(σ2
t) ∼ N (-1, 0.3) log(σ2

y) ∼ N (-3, 0.3) εxi
iid∼ N (0, σ2

x)

εti
iid∼ N (0, σ2

t) εyi
iid∼ N (0, σ2

y) xi = εxi

ti = βt · xi + εti yi = βy · [ti, xi] + εyi

Frontdoor Adjusted.

βt ∼ N (.5, 0.3) βx ∼ N (1, 0.3) βy ∼ N ([1, .5]>, 0.3I)

log(σ2
t) ∼ N (-2, 0.3) log(σ2

x) ∼ N (-1, 0.3) log(σ2
y) ∼ N (-3, 0.3)

εti
iid∼ N (0, σ2

t) εxi
iid∼ N (0, σ2

x) εyi
iid∼ N (0, σ2

y)

ui
iid∼ N (0, 0.3) ti = βt · ui + εti xi = βx · ti + εxi

yi = βy · [xi, ui] + εyi

129

Instrumental Variable.

βt ∼ N ([2, .5]>, 0.3I) βy ∼ N ([1, .5]>, 0.3I) log(σ2
x) ∼ N (0, 0.3)

log(σ2
t) ∼ N (-1, 0.3) log(σ2

y) ∼ N (-3, 0.3) εxi
iid∼ N (0, σ2

x)

εti
iid∼ N (0, σ2

t) εyi
iid∼ N (0, σ2

y) ui
iid∼ N (0, 0.3)

xi = εxi ti = βt · [Ii, ui] + εti yi = βy · [ti, ui] + εyi

Within Subjects. Here, uo(i) refers to the shared value of the latent confounder,

uo, associated with instance i. For these experiments, we assume that each object

instance, o, is shared between 25 instances of treatment and outcome.

βt ∼ N (.5, 0.3) βy ∼ N ([1, .5]>, 0.3I) log(σ2
t) ∼ N (-1, 0.3)

log(σ2
y) ∼ N (-3, 0.3) uo

iid∼ N (0, 0.3) εti
iid∼ N (0, σ2

t)

εyi
iid∼ N (0, σ2

y) ti = βt · uo(i) + εti yi = βy · [ti, uo(i)] + εyi

Regression Discontinuity Design.

βy ∼ N ([0.5, 0.5, -0.5]>, 0.3I) log(σ2
x) ∼ N (-1, 0.3) log(σ2

y) ∼ N (-3, 0.3)

εxi
iid∼ N (0, σ2

x) εyi
iid∼ N (0, σ2

y) xi = εxi

ti = 1xi>0 yi = βy · [xi, ti, 1− ti] + εyi

A.2.2 Gaussian Process Structural Causal Models

For each of the experiments using Gaussian process priors over structural causal

models we use the same prior over linear structural causal models for all functions

except the outcome function ft, which is drawn from the Gaussian process prior

described in Section 6.3.2.

130

A.2.3 Additional Baseline Details

For our profile likelihood baseline identification method, we used an approach

based on profile likelihood identification [105]. For each model the baseline is identical

to the SBI in all respects, except that it uses only a single particle with no repulsion

term. Instead, to traverse the likelihood surface the baseline first performs 100 epochs

of the Adam optimization method using the gradient of the log-likelihood to find a

single maximum likelihood solution. Then, for each parameter s ∈ θ, we increment the

parameter by a small amount s← s+ ∆s and then again run the Adam optimization

method using the gradient of the log-likelihood with respect to all parameters except

for s for 100 steps. In our experiments we use ∆s = 0.01 for all parameters. We report

the range over estimated causal effects after repeating this procedure 100 times for

all s ∈ θ. Intuitively, if the likelihood surface is on a ridge of equivalent maximum

likelihood models then alternating between perturbations and optimization will find

other locations on that maximum likelihood surface. We discuss limitations of this

kind of approach in Section 6.1, and show empirically that SBI outperforms it in

Section 6.4.

For our Metropolis Hastings baseline identification method, we used a combination

of standard inference procedures to approximate the posterior p(Q|Ṽ) directly. This

inference procedure involved alternating between 10 steps of random walk Metropolis

Hastings on each s ∈ θ and 10 steps of elliptical slice sampling on u (when applicable)

a total of 100 times. To compensate for the additional computational costs of this

sampling-based approximate inference procedure, we reduced the number of instances,

(n), to 250 for this baseline. In addition, we eliminated the first 25 sets of 10

Metropolis-Hastings and elliptical slice moves as a burn-in.

131

A.2.4 Hyperprior Demonstration

As we discussed in Section 6.5, we ran an additional experiment to demonstrate

the use of hyperpriors to represent broader uncertainty. In this experiment, each ui ∼

N (umean, uvar), and umean ∼ N (0, 1), log(uvar) ∼ N (0, 1). SBI correctly determined

that the SATE is not identifable with ∆Q̂SBI = 0.55± 0.36.

132

BIBLIOGRAPHY

[1] Abelson, Harold, and Sussman, Gerald Jay. Structure and interpretation of
computer programs. The MIT Press, 1996.

[2] Alaa, Ahmed, and van der Schaar, Mihaela. Bayesian inference of individualized
treatment effects using multi-task Gaussian processes. In Advances in Neural
Information Processing Systems (2017), pp. 3424–3432.

[3] Alaa, Ahmed, and van der Schaar, Mihaela. Bayesian nonparametric causal
inference: Information rates and learning algorithms. IEEE Journal of Selected
Topics in Signal Processing 12, 5 (2018), 1031–1046.

[4] Aldrich, John. Autonomy. Oxford Economic Papers 41, 1 (1989), 15–34.

[5] Andrieu, Christophe, Lee, Anthony, and Livingstone, Sam. A general perspective
on the metropolis-hastings kernel. arXiv preprint arXiv:2012.14881 (2020).

[6] Andrieu, Christophe, and Roberts, Gareth O. The pseudo-marginal approach
for efficient monte carlo computations. The Annals of Statistics 37, 2 (2009),
697–725.

[7] Angrist, Joshua D. Lifetime earnings and the vietnam era draft lottery: evidence
from social security administrative records. The american economic review
(1990), 313–336.

[8] Angrist, Joshua D, Imbens, Guido W, and Rubin, Donald B. Identification of
causal effects using instrumental variables. Journal of the American statistical
Association 91, 434 (1996), 444–455.

[9] Athey, Susan, and Imbens, Guido W. Identification and inference in nonlinear
difference-in-differences models. Econometrica 74, 2 (2006), 431–497.

[10] Aumann, Robert J. Borel structures for function spaces. Illinois Journal of
Mathematics 5, 4 (1961), 614–630.

[11] Balke, Alexander, and Pearl, Judea. Counterfactual probabilities: Computational
methods, bounds and applications. In Uncertainty Proceedings 1994. Elsevier,
1994, pp. 46–54.

[12] Bareinboim, Elias, Correa, Juan D, Ibeling, Duligur, and Icard, Thomas. On
pearl’s hierarchy and the foundations of causal inference. ACM Special Volume
in Honor of Judea Pearl (provisional title) 2, 3 (2020), 4.

133

[13] Bengio, Yoshua, Goodfellow, Ian, and Courville, Aaron. Deep learning, vol. 1.
MIT press Cambridge, MA, USA, 2017.

[14] Berkson, Joseph. Limitations of the application of fourfold table analysis to
hospital data. Biometrics Bulletin 2, 3 (1946), 47–53.

[15] Bezanson, Jeff, Edelman, Alan, Karpinski, Stefan, and Shah, Viral B. Julia: A
fresh approach to numerical computing. SIAM review 59, 1 (2017), 65–98.

[16] Bingham, Eli, Chen, Jonathan P., Jankowiak, Martin, Obermeyer, Fritz, Prad-
han, Neeraj, Karaletsos, Theofanis, Singh, Rohit, Szerlip, Paul, Horsfall, Paul,
and Goodman, Noah D. Pyro: Deep Universal Probabilistic Programming.
Journal of Machine Learning Research (2018).

[17] Bollen, Kenneth A. Structural equation models. Encyclopedia of biostatistics 7
(2005).

[18] Bongers, Stephan, Blom, Tineke, and Mooij, Joris M. Causal modeling of
dynamical systems. arXiv preprint arXiv:1803.08784 (2018).

[19] Bongers, Stephan, Forré, Patrick, Peters, Jonas, and Mooij, Joris M. Foundations
of structural causal models with cycles and latent variables. The Annals of
Statistics 49, 5 (2021), 2885–2915.

[20] Boomsma, Dorret, Busjahn, Andreas, and Peltonen, Leena. Classical twin
studies and beyond. Nature Reviews Genetics 3, 11 (2002), 872–882.

[21] Branson, Zach, Rischard, Maxime, Bornn, Luke, and Miratrix, Luke W. A non-
parametric bayesian methodology for regression discontinuity designs. Journal
of Statistical Planning and Inference 202 (2019), 14–30.

[22] Campbell, Donald T, and Stanley, Julian C. Experimental and quasi-experimental
designs for research. Ravenio books, 2015.

[23] Cao, Yanshuai. Scaling Gaussian Processes. PhD thesis, University of Toronto
(Canada), 2018.

[24] Carpenter, Bob, Gelman, Andrew, Hoffman, Matthew D, Lee, Daniel, Goodrich,
Ben, Betancourt, Michael, Brubaker, Marcus, Guo, Jiqiang, Li, Peter, and
Riddell, Allen. Stan: A probabilistic programming language. Journal of statistical
software 76, 1 (2017).

[25] Cinelli, Carlos, Forney, Andrew, and Pearl, Judea. A crash course in good and
bad controls. Sociological Methods & Research (2021), 00491241221099552.

[26] Cragg, John G, and Donald, Stephen G. Testing identifiability and specification
in instrumental variable models. Econometric Theory (1993), 222–240.

134

[27] Cusumano-Towner, Marco, Lew, Alexander K, and Mansinghka, Vikash K.
Automating involutive mcmc using probabilistic and differentiable programming.
arXiv preprint arXiv:2007.09871 (2020).

[28] Cusumano-Towner, Marco F, Saad, Feras A, Lew, Alexander K, and Mansinghka,
Vikash K. Gen: A general-purpose probabilistic programming system with
programmable inference. In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation (2019), ACM, pp. 221–
236.

[29] Cusumano-Towner, Marco Francis. Gen: a high-level programming platform for
probabilistic inference. PhD thesis, Massachusetts Institute of Technology, 2020.

[30] D’Amour, Alexander. On multi-cause approaches to causal inference with unob-
served counfounding: Two cautionary failure cases and a promising alternative.
In The 22nd International Conference on Artificial Intelligence and Statistics
(2019), pp. 3478–3486.

[31] Dillon, Joshua V, Langmore, Ian, Tran, Dustin, Brevdo, Eugene, Vasudevan,
Srinivas, Moore, Dave, Patton, Brian, Alemi, Alex, Hoffman, Matt, and Saurous,
Rif A. Tensorflow distributions. arXiv preprint arXiv:1711.10604 (2017).

[32] Dinh, Laurent, Sohl-Dickstein, Jascha, and Bengio, Samy. Density estimation
using real nvp. arXiv preprint arXiv:1605.08803 (2016).

[33] Domke, Justin, and Sheldon, Daniel R. Divide and couple: Using monte
carlo variational objectives for posterior approximation. Advances in neural
information processing systems 32 (2019).

[34] Doob, Joseph L. Application of the theory of martingales. Le calcul des
probabilites et ses applications (1949), 23–27.

[35] Doucet, Arnaud, Godsill, Simon, and Andrieu, Christophe. On sequential monte
carlo sampling methods for bayesian filtering. Statistics and computing 10, 3
(2000), 197–208.

[36] Draper, David. Inference and hierarchical modeling in the social sciences. Journal
of Educational and Behavioral Statistics 20, 2 (1995), 115–147.

[37] Duane, Simon, Kennedy, Anthony D, Pendleton, Brian J, and Roweth, Duncan.
Hybrid monte carlo. Physics letters B 195, 2 (1987), 216–222.

[38] Eberhardt, Frederick, and Scheines, Richard. Interventions and causal inference.
Philosophy of Science 74, 5 (2007), 981–995.

[39] Elwert, Felix, and Winship, Christopher. Endogenous selection bias: The
problem of conditioning on a collider variable. Annual review of sociology 40
(2014), 31–53.

135

[40] England, ISO New. Energy, load, and demand reports. https://www.iso-
ne.com/isoexpress/web/reports/load-and-demand/-/tree/zone-info, 2018.

[41] Finke, Axel. On extended state-space constructions for Monte Carlo methods.
PhD thesis, University of Warwick, 2015.

[42] Franks, AlexanderM, D’Amour, Alexander, and Feller, Avi. Flexible sensitivity
analysis for observational studies without observable implications. Journal of
the American Statistical Association (2019).

[43] Gelman, Andrew. Multilevel (hierarchical) modeling: What it can and cannot
do. Technometrics 48, 3 (2006), 432–435.

[44] Gelman, Andrew, Carlin, John B, Stern, Hal S, and Rubin, Donald B. Bayesian
data analysis. Chapman and Hall/CRC, 1995.

[45] Gelman, Andrew, and Hill, Jennifer. Data Analysis Using Regression and
Multilevel/Hierarchical Models. Cambridge University Press, 2006.

[46] Gelman, Andrew, Vehtari, Aki, Simpson, Daniel, Margossian, Charles C, Carpen-
ter, Bob, Yao, Yuling, Kennedy, Lauren, Gabry, Jonah, Bürkner, Paul-Christian,
and Modrák, Martin. Bayesian workflow. arXiv preprint arXiv:2011.01808
(2020).

[47] Gentzel, Amanda, Garant, Dan, and Jensen, David. The case for evaluating
causal models using interventional measures and empirical data. In Advances in
Neural Information Processing Systems (2019), pp. 11717–11727.

[48] Goodman, Noah D, Mansinghka, Vikash K, Roy, Daniel, Bonawitz, Keith, and
Tenenbaum, Joshua B. Church: a language for generative models. In Proceedings
of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence (2008),
pp. 220–229.

[49] Gothoskar, Nishad, Cusumano-Towner, Marco, Zinberg, Ben, Ghavamizadeh,
Matin, Pollok, Falk, Garrett, Austin, Tenenbaum, Josh, Gutfreund, Dan, and
Mansinghka, Vikash. 3dp3: 3d scene perception via probabilistic programming.
Advances in Neural Information Processing Systems 34 (2021), 9600–9612.

[50] Haavelmo, Trygve. The probability approach in econometrics. Econometrica:
Journal of the Econometric Society (1944), iii–115.

[51] Halpern, Joseph Y. Actual causality. MiT Press, 2016.

[52] Hartford, Jason, Lewis, Greg, Leyton-Brown, Kevin, and Taddy, Matt. Deep iv:
A flexible approach for counterfactual prediction. In International Conference
on Machine Learning (2017), PMLR, pp. 1414–1423.

[53] Hastings, Keith. Monte Carlo Sampling Methods Using Markov Chains and
Their Applications. Oxford University Press, 1970.

136

h

[54] Hill, Jennifer. Bayesian nonparametric modeling for causal inference. Journal
of Computational and Graphical Statistics 20, 1 (2011), 217–240.

[55] Hoffman, Matthew D, Gelman, Andrew, et al. The no-u-turn sampler: adaptively
setting path lengths in hamiltonian monte carlo. J. Mach. Learn. Res. 15, 1
(2014), 1593–1623.

[56] Hong, Guanglei. Causal inference for multi-level observational data with appli-
cation to kindergarten retention. University of Michigan, 2004.

[57] Hong, Guanglei, and Raudenbush, Stephen. Evaluating kindergarten retention
policy. Journal of the American Statistical Association 101, 475 (2006), 901–910.

[58] Hong, Guanglei, and Yu, Bing. Effects of kindergarten retention on children’s
social-emotional development: An application of propensity score method to
multivariate, multilevel data. Developmental Psychology 44, 2 (2008), 407.

[59] Huang, Yimin, and Valtorta, Marco. Pearl’s calculus of intervention is complete.
In Proceedings of the Twenty-Second Conference on Uncertainty in Artificial
Intelligence (2006), pp. 217–224.

[60] Ibeling, Duligur, and Icard, Thomas. On open-universe causal reasoning. In
Uncertainty in Artificial Intelligence (2020), PMLR, pp. 1233–1243.

[61] Imbens, Guido, and Rubin, Donald. Causal Inference in Statistics, Social, and
Biomedical Sciences. Cambridge University Press, 2015.

[62] Imbens, Guido W. Nonparametric estimation of average treatment effects under
exogeneity: A review. Review of Economics and statistics 86, 1 (2004), 4–29.

[63] Jensen, David, Burroni, Javier, and Rattigan, Matthew. Object conditioning
for causal inference. In Uncertainty in Artificial Intelligence (2020), PMLR,
pp. 1072–1082.

[64] Johansson, Fredrik, Shalit, Uri, and Sontag, David. Learning representations for
counterfactual inference. In Proceedings of The 33rd International Conference
on Machine Learning (New York, New York, USA, 20–22 Jun 2016), vol. 48 of
Proceedings of Machine Learning Research, PMLR, pp. 3020–3029.

[65] Johnson, Brittany, Bartola, Jesse, Angell, Rico, Keith, Katherine, Witty, Sam,
Giguere, Stephen J, and Brun, Yuriy. Fairkit, fairkit, on the wall, who’s the
fairest of them all? supporting data scientists in training fair models. arXiv
preprint arXiv:2012.09951 (2020).

[66] Kallus, Nathan, Mao, Xiaojie, and Zhou, Angela. Interval estimation of
individual-level causal effects under unobserved confounding. In The 22nd
International Conference on Artificial Intelligence and Statistics (2019), PMLR,
pp. 2281–2290.

137

[67] Kingma, Diederik P, and Ba, Jimmy. Adam: A method for stochastic optimiza-
tion. In ICLR (Poster) (2015).

[68] Korb, Kevin B, Hope, Lucas R, Nicholson, Ann E, and Axnick, Karl. Varieties
of causal intervention. In Pacific Rim International Conference on Artificial
Intelligence (2004), Springer, pp. 322–331.

[69] Kumor, Daniel, Chen, Bryant, and Bareinboim, Elias. Efficient identification
in linear structural causal models with instrumental cutsets. In Advances in
Neural Information Processing Systems (2019), pp. 12477–12486.

[70] Kuroki, Manabu, and Pearl, Judea. Measurement bias and effect restoration in
causal inference. Biometrika 101, 2 (2014), 423–437.

[71] Lawrence, Neil. Gaussian process latent variable models for visualisation of
high dimensional data. In Advances in Neural Information Processing Systems
(2004), pp. 329–336.

[72] Le, Tuan Anh, Baydin, Atilim Gunes, and Wood, Frank. Inference compilation
and universal probabilistic programming. In Artificial Intelligence and Statistics
(2017), PMLR, pp. 1338–1348.

[73] Lee, David S, and Lemieux, Thomas. Regression discontinuity designs in
economics. Journal of economic literature 48, 2 (2010), 281–355.

[74] Lee, Sanghack, Correa, Juan D, and Bareinboim, Elias. General identifiability
with arbitrary surrogate experiments. In Uncertainty in Artificial Intelligence
(2020), PMLR, pp. 389–398.

[75] Lew, Alexander K, Cusumano-Towner, Marco, and Mansinghka, Vikash. Recur-
sive monte carlo and variational inference with auxiliary variables. In The 38th
Conference on Uncertainty in Artificial Intelligence (2022).

[76] Liang, Kung-Yee, and Zeger, Scott L. Longitudinal data analysis using general-
ized linear models. Biometrika 73, 1 (1986), 13–22.

[77] Loftus, Geoffrey, and Masson, Michael. Using confidence intervals in within-
subject designs. Psychonomic Bulletin & Review 1, 4 (1994), 476–490.

[78] Louizos, Christos, Shalit, Uri, Mooij, Joris, Sontag, David, Zemel, Richard,
and Welling, Max. Causal effect inference with deep latent-variable models. In
Advances in Neural Information Processing Systems (2017), pp. 6446–6456.

[79] Lousdal, Mette Lise. An introduction to instrumental variable assumptions,
validation and estimation. Emerging themes in epidemiology 15, 1 (2018), 1.

[80] Maclaren, Oliver J, and Nicholson, Ruanui. What can be estimated? identifiabil-
ity, estimability, causal inference and ill-posed inverse problems. arXiv preprint
arXiv:1904.02826 (2019).

138

[81] Maier, Marc. Causal discovery for relational domains: Representation, reasoning,
and learning. UMass PhD Dissertation (2014).

[82] Malinsky, Daniel, Shpitser, Ilya, and Richardson, Thomas. A potential out-
comes calculus for identifying conditional path-specific effects. In The 22nd
International Conference on Artificial Intelligence and Statistics (2019), PMLR,
pp. 3080–3088.

[83] Mansinghka, Vikash, Selsam, Daniel, and Perov, Yura. Venture: a higher-
order probabilistic programming platform with programmable inference. arXiv
preprint arXiv:1404.0099 (2014).

[84] Miao, Wang, Geng, Zhi, and Tchetgen Tchetgen, Eric. Identifying causal effects
with proxy variables of an unmeasured confounder. Biometrika 105, 4 (08 2018),
987–993.

[85] Murphy, Kevin P. Machine learning: a probabilistic perspective. MIT Press,
2012.

[86] Murray, Iain, Adams, Ryan, and MacKay, David. Elliptical slice sampling. In
Proceedings of the thirteenth international conference on artificial intelligence
and statistics (2010), JMLR Workshop and Conference Proceedings, pp. 541–548.

[87] Neal, Radford. Bayesian Learning for Neural Networks, vol. 118. Springer
Science & Business Media, 2012.

[88] Neal, Radford M, et al. Mcmc using hamiltonian dynamics. Handbook of markov
chain monte carlo 2, 11 (2011), 2.

[89] Neklyudov, Kirill, Welling, Max, Egorov, Evgenii, and Vetrov, Dmitry. Involutive
mcmc: a unifying framework. In International Conference on Machine Learning
(2020), PMLR, pp. 7273–7282.

[90] Neyman, Jerzy, and Pearson, Egon Sharpe. Ix. on the problem of the most
efficient tests of statistical hypotheses. Philosophical Transactions of the Royal
Society of London. Series A, Containing Papers of a Mathematical or Physical
Character 231, 694-706 (1933), 289–337.

[91] Ouyang, Long, Tessler, Michael Henry, Ly, Daniel, and Goodman, Noah. Prac-
tical optimal experiment design with probabilistic programs. arXiv preprint
arXiv:1608.05046 (2016).

[92] Pawlowski, Nick, Coelho de Castro, Daniel, and Glocker, Ben. Deep struc-
tural causal models for tractable counterfactual inference. Advances in Neural
Information Processing Systems 33 (2020), 857–869.

[93] Pearl, Judea. Causal diagrams for empirical research. Biometrika 82, 4 (1995),
669–688.

139

[94] Pearl, Judea. Causality: models, reasoning and inference, vol. 29. Springer,
2000.

[95] Pearl, Judea. Bayesianism and causality, or, why i am only a half-bayesian. In
Foundations of bayesianism. Springer, 2001, pp. 19–36.

[96] Pearl, Judea. Causal inference in statistics: An overview. Statistics surveys 3
(2009), 96–146.

[97] Pearl, Judea. Causality: Models, Reasoning and Inference, 2nd ed. Cambridge
University Press, New York, NY, USA, 2009.

[98] Pearl, Judea. Interpretation and identification of causal mediation. Psychological
methods 19, 4 (2014), 459.

[99] Perov, Yura, Graham, Logan, Gourgoulias, Kostis, Richens, Jonathan, Lee,
Ciaran, Baker, Adam, and Johri, Saurabh. Multiverse: causal reasoning using
importance sampling in probabilistic programming. In Symposium on advances
in approximate bayesian inference (2020), PMLR, pp. 1–36.

[100] Quiñonero-Candela, Joaquin, and Rasmussen, Carl Edward. A unifying view of
sparse approximate gaussian process regression. Journal of Machine Learning
Research 6, Dec (2005), 1939–1959.

[101] Ramey, Craig T, Bryant, Donna M, Wasik, Barbara H, Sparling, Joseph J,
Fendt, Kaye H, and La Vange, Lisa M. Infant health and development program
for low birth weight, premature infants: Program elements, family participation,
and child intelligence. Pediatrics 89, 3 (1992), 454–465.

[102] Ranganath, Rajesh, Gerrish, Sean, and Blei, David. Black box variational
inference. In Artificial intelligence and statistics (2014), PMLR, pp. 814–822.

[103] Rasmussen, Carl. Gaussian processes in machine learning. In Summer School
on Machine Learning (2003), Springer, pp. 63–71.

[104] Rasmussen, Carl Edward, and Ghahramani, Zoubin. Occam’s razor. Advances
in neural information processing systems (2001), 294–300.

[105] Raue, Andreas, Kreutz, Clemens, Maiwald, Thomas, Bachmann, Julie, Schilling,
Marcel, Klingmüller, Ursula, and Timmer, Jens. Structural and practical
identifiability analysis of partially observed dynamical models by exploiting the
profile likelihood. Bioinformatics 25, 15 (2009), 1923–1929.

[106] Richardson, Thomas S, and Robins, James M. Single world intervention graphs
(swigs): A unification of the counterfactual and graphical approaches to causality.
Center for the Statistics and the Social Sciences, University of Washington Series.
Working Paper 128, 30 (2013), 2013.

140

[107] Rissanen, Severi, and Marttinen, Pekka. A critical look at the consistency
of causal estimation with deep latent variable models. Advances in Neural
Information Processing Systems 34 (2021).

[108] Roberts, Gareth O, Tweedie, Richard L, et al. Exponential convergence of
langevin distributions and their discrete approximations. Bernoulli 2, 4 (1996),
341–363.

[109] Robins, James M, Rotnitzky, Andrea, and Scharfstein, Daniel O. Sensitivity
analysis for selection bias and unmeasured confounding in missing data and
causal inference models. In Statistical models in epidemiology, the environment,
and clinical trials. Springer, 2000, pp. 1–94.

[110] Rubenstein, Paul K, Bongers, Stephan, Schölkopf, Bernhard, and Mooij, Joris M.
From deterministic odes to dynamic structural causal models. arXiv preprint
arXiv:1608.08028 (2016).

[111] Rubin, Donald B. Assignment to treatment group on the basis of a covariate.
Journal of educational Statistics 2, 1 (1977), 1–26.

[112] Rubin, Donald B. Bayesian inference for causal effects: The role of randomization.
The Annals of statistics (1978), 34–58.

[113] Rubin, Donald B. Using the sir algorithm to simulate posterior distributions.
Bayesian statistics 3 (1988), 395–402.

[114] Saad, Feras A, Cusumano-Towner, Marco F, Schaechtle, Ulrich, Rinard, Mar-
tin C, and Mansinghka, Vikash K. Bayesian synthesis of probabilistic programs
for automatic data modeling. Proceedings of the ACM on Programming Lan-
guages 3, POPL (2019), 37.

[115] Salimans, Tim, Kingma, Diederik, and Welling, Max. Markov chain monte carlo
and variational inference: Bridging the gap. In International Conference on
Machine Learning (2015), PMLR, pp. 1218–1226.

[116] Schulam, Peter, and Saria, Suchi. Reliable decision support using counterfactual
models. In Advances in Neural Information Processing Systems (2017), pp. 1697–
1708.

[117] Shadish, William, Clark, Margaret, and Steiner, Peter. Can nonrandomized
experiments yield accurate answers? a randomized experiment comparing
random and nonrandom assignments. Journal of the American Statistical
Association 103, 484 (2008), 1334–1344.

[118] Shalit, Uri, Johansson, Fredrik, and Sontag, David. Estimating individual
treatment effect: Generalization bounds and algorithms. In Proceedings of
the 34th International Conference on Machine Learning - Volume 70 (2017),
ICML’17, JMLR.org, p. 3076–3085.

141

[119] Sherman, Eli, and Shpitser, Ilya. Intervening on network ties. In Proceedings of
the International Conference on Uncertainty in Artificial Intelligence (2019).

[120] Silva, Ricardo, and Gramacy, Robert B. Gaussian process structural equation
models with latent variables. In Proceedings of the Twenty-Sixth Conference on
Uncertainty in Artificial Intelligence (2010), pp. 537–545.

[121] Snelson, Edward, Ghahramani, Zoubin, and Rasmussen, Carl E. Warped
gaussian processes. In Advances in neural information processing systems (2004),
pp. 337–344.

[122] Swanson, Sonja A, Hernán, Miguel A, Miller, Matthew, Robins, James M,
and Richardson, Thomas S. Partial identification of the average treatment
effect using instrumental variables: review of methods for binary instruments,
treatments, and outcomes. Journal of the American Statistical Association 113,
522 (2018), 933–947.

[123] Talts, Sean, Betancourt, Michael, Simpson, Daniel, Vehtari, Aki, and Gel-
man, Andrew. Validating bayesian inference algorithms with simulation-based
calibration. arXiv preprint arXiv:1804.06788 (2018).

[124] Tavares, Zenna, Koppel, James, Zhang, Xin, Das, Ria, and Solar-Lezama,
Armando. A language for counterfactual generative models. In International
Conference on Machine Learning (2021), PMLR, pp. 10173–10182.

[125] Thistlethwaite, Donald L, and Campbell, Donald T. Regression-discontinuity
analysis: An alternative to the ex post facto experiment. Journal of Educational
psychology 51, 6 (1960), 309.

[126] Tian, Jin, and Pearl, Judea. Probabilities of causation: Bounds and identification.
Annals of Mathematics and Artificial Intelligence 28, 1 (2000), 287–313.

[127] Titsias, Michalis, and Lawrence, Neil. Bayesian gaussian process latent variable
model. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics (2010), pp. 844–851.

[128] Tran, Dustin, and Blei, David M. Implicit causal models for genome-wide
association studies. In International Conference on Learning Representations
(2018).

[129] Valdes-Sosa, Pedro A, Roebroeck, Alard, Daunizeau, Jean, and Friston, Karl.
Effective connectivity: influence, causality and biophysical modeling. Neuroimage
58, 2 (2011), 339–361.

[130] Van der Laan, Mark J, Polley, Eric C, and Hubbard, Alan E. Super learner.
Statistical applications in genetics and molecular biology 6, 1 (2007).

142

[131] Wainwright, Martin J, Jordan, Michael I, et al. Graphical models, exponential
families, and variational inference. Foundations and Trends® in Machine
Learning 1, 1–2 (2008), 1–305.

[132] Wang, Yixin, and Blei, David M. The blessings of multiple causes. Journal of
the American Statistical Association (2019), 1–71.

[133] Wang, Yuhao, Solus, Liam, Yang, Karren, and Uhler, Caroline. Permutation-
based causal inference algorithms with interventions. In Advances in Neural
Information Processing Systems (2017), pp. 5822–5831.

[134] Witty, Sam, and Jensen, David. Causal graphs vs. causal programs: The case
of conditional branching. In Proceedings of the First Conference on Probabilistic
Programming (2018).

[135] Witty, Sam, Jensen, David, and Mansinghka, Vikash. A simulation-based test
of identifiability for bayesian causal inference, 2022.

[136] Witty, Sam, Lee, Jun K, Tosch, Emma, Atrey, Akanksha, Clary, Kaleigh,
Littman, Michael L, and Jensen, David. Measuring and characterizing gen-
eralization in deep reinforcement learning. Applied AI Letters 2, 4 (2021),
e45.

[137] *Witty, Sam, *Lew, Alexander, Jensen, David, and Mansinghka, Vikash.
Bayesian causal inference via probabilistic program synthesis. In Proceedings of
the Second Conference on Probabilistic Programming (2020).

[138] Witty, Sam, Takatsu, Kenta, Jensen, David, and Mansinghka, Vikash. Causal
inference using gaussian processes with structured latent confounders. In Inter-
national Conference on Machine Learning (2020), PMLR, pp. 10313–10323.

[139] Xia, Kevin, Lee, Kai-Zhan, Bengio, Yoshua, and Bareinboim, Elias. The causal-
neural connection: Expressiveness, learnability, and inference. Advances in
Neural Information Processing Systems 34 (2021).

[140] Yalburgi, Sharan, Freer, Cameron, Quinn, Jameson, Weiner, Veronica, Witty,
Sam, and Mansinghka, Vikash. Assessing inference quality for probabilistic
programs using multivariate simulation based calibration. In Proceedings of the
Third Conference on Probabilistic Programming (2021).

[141] Yang, Karren, Katcoff, Abigail, and Uhler, Caroline. Characterizing and learn-
ing equivalence classes of causal dags under interventions. In International
Conference on Machine Learning (2018), PMLR, pp. 5541–5550.

[142] Zhang, Junzhe, Tian, Jin, and Bareinboim, Elias. Partial counterfactual
identification from observational and experimental data. arXiv preprint
arXiv:2110.05690 (2021).

143

[143] Zhang, Kun, Schölkopf, Bernhard, and Janzing, Dominik. Invariant Gaussian
process latent variable models and application in causal discovery. In Proceedings
of the 26th Conference on Uncertainty in Artificial Intelligence (UAI) (2010).

[144] Zheng, Xun, Aragam, Bryon, Ravikumar, Pradeep K, and Xing, Eric P. Dags
with no tears: Continuous optimization for structure learning. Advances in
Neural Information Processing Systems 31 (2018).

144

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Notation
	Epigraph
	Contributions
	Introduction
	Motivation
	Thesis Overview
	Key Claims

	Background
	Causal Inference
	Potential Outcomes
	Instrumental Variable Designs
	Regression Discontinuity Designs
	Structured Latent Confounding

	Pearl's Structural Approach
	Instrumental Variable Designs: A Graphical Perspective
	Regression Discontinuity Designs: A Graphical Perspective
	Structured Latent Confounding: A Graphical Perspective

	Bayesian Statistics
	Approximate Inference — Importance Sampling

	Gaussian Processes
	Kernel Specification

	Probabilistic Programming
	Gen and the Generative Function Interface

	Bayesian Structural Causal Inference
	Overview
	Linear Example
	Hierarchical Bayesian Extension
	Posterior Inference
	Intervention Program Transformations
	Causal Queries
	Composing Intervention Program Transformations with Hierarchical Priors over Probabilistic SCMs
	Stronger Causal Assumptions as Priors
	Quasi-Experimental Designs
	A Note on Traced Randomness and Reparameterization

	Choosing a Formalism for Causal Inference: Strengths and Limitations of the Bayesian Approach
	Related Work
	Conclusion

	Hierarchical Causal Inference using Gaussian Processes with Structured Latent Confounders
	Background
	Object Conditioning
	Causal Inference with Latent Confounders
	Gaussian Process Models

	Gaussian Processes with Structured Latent Confounders
	Conditional Density

	Estimating Treatment Effects
	Approximate Inference: Elliptical Slice and Metropolis-Hastings
	Exact Inference: Gaussian Process Conditioning

	Asymptotic Posterior Consistency
	Setup.

	Experiments
	Synthetic Data
	Infant Health and Development Program
	New England Energy Consumption
	Limitations

	Related Work
	Conclusions

	Multi-source Experimental Data
	A Conceptual Example
	Priors on Causal Models
	Likelihoods for Experiments
	Inference
	Discussion
	Related Work

	SBI: A Simulation-Based Test of Identifiability for Bayesian Structural Causal Inference
	Related Work
	Identifiability in Bayesian Causal Inference
	Example: Confounded Linear Model

	Simulation-Based Identifiability
	Likelihood Ratio Test
	Example: Confounded Gaussian Process

	Experiments
	Causal Graphical Models.
	Linear Quasi-Experimental Designs.
	Gaussian Process Quasi-Experimental Designs.

	Discussion

	Conclusion
	Summary of Contributions
	Key Claims Restated

	Future Work
	Causal Probabilistic Programming Language Design
	Applications.

	Additional Experimental Detail
	Causal Inference Using Gaussian Processes with Structured Latent Confounding
	Baselines

	Simulation Based Identifiability
	Linear Structural Causal Models
	Gaussian Process Structural Causal Models
	Additional Baseline Details
	Hyperprior Demonstration

	Bibliography

