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1. Motivation

2. Equivalence

3. Structure Discovery Experiments

A set of techniques has been developed over the past 25 years to learn the structure of 
causal graphical models from observational (non-experimental) data[3], however they 
implicitly assume that the graph structure is context-independent.
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do(C=c)

A � fA()
B � fB()
C � fC(A, B)
D � fD(C)
E � fE(D)

A � fA()
B � fB()
C � c
D � fD(C)
E � fE(D)

A B

Program	P1: Context-Independent	Structure
A � fA()
B � fB(A)
C � fC(A)
D � fD(B, C)

Program	P2: Context-Dependent	Structure
if Bernoulli(p) then

A � fA()
C � fC(A)

else
C � fC�()
A � fA�(C)

B � fB(A)
D � fD(B, C)

Two	models M and M � are observationally	equivalent if P (X|M) = P (X|M �)

Given	a	probabilistic	program	with	context-dependent	 causal	 structure	 there	does	not
exist	an	interventionally	equivalent	causal	graphical	model. However, there	may	exist	an
observationally	equivalent	causal	graphical	model.

We	evaluate	the	performance	of	graph-based	structure	discovery	algorithms	when	the	gen-
erative	process	is	a	causal	probabilistic	program	with	context-dependent	causal	structure
using	synthetic	experiments.

Given	a	model M = (G, F ), where G = (V, E) is	a	directed	graph	and F is	a	set	of	con-
ditional	probability	distributions P (X|Pa(X))�X � V , there	exists	a	causal	probabilistic
program	which	is	observationally	and	interventionally	equivalent	to M over	all X � V .

To	do	this	we: (1)	generate	observational	samples	 from	programs	P1	and	P2, (2)	 learn
a	Markov	equivalence	class	of	graphical	models	using	the	max-min	hill	climbing	algo-
rithm[4], (3)	non-parametrically	estimate	local	conditional	probability	distributions, and
(4)	generate	interventional	samples	from	both	the	causal	probabilistic	program	and	the
learned	graphical	model	for	the	intervention do(A = a).
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When	the	generative	process	 is	not	 interventionally	equivalent	 to	any	causal	graphical
model, the	graph-based	causal	discovery	procedure	produces	estimates	that	closely	ap-
proximate	the	observational	distribution, but	deviate	significantly	from	the	interventional
distribution.

When	the	generative	process	is	probabilistically	and	interventionally	equivalent	to	a	causal
graphical	model, the	 graph-based	causal	discovery	procedure	produces	 estimates	 that
closely	approximate	the	observational	and	interventional	distributions.

4. Conclusions

Program	P1: Context-Independent	Structure
A � fA()
B � fB(A)
C � fC(A)
D � fD(B, C)

Program	P2: Context-Dependent	Structure
if Bernoulli(p) then

A � fA()
C � fC(A)

else
C � fC�()
A � fA�(C)

B � fB(A)
D � fD(B, C)

Causal	probabilistic	programs include	common	programming	constructs	such	as	recur-
sion, looping, and	conditional	branching. Conditional	branching[1]	can	be	used	to	rep-
resent context-dependent causal	structure, i.e. for	some	subset	of	random	variables, C,
there	exist	two	execution	paths i and j through	the	program, such	that Pa(Ci) �= Pa(Cj).
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Two	models M and M � are interventionally	equivalent over	a	set	of	intervenable	random
variables Y if P (X|M, do(Y � = y�)) = P (X|M �, do(Y � = y�)), �Y � � Y, y� � domain(Y �)

M1 and M2 are	observationally	equivalent	given	particular	conditional	probability	distri-
butions, but	are	not	interventionally	equivalent	except	for	the	trivial	case	of A �� B.

or

• We	demonstrate	that	simple	causal	probabilistic	programs	with	conditional	branch-
ing	can	represent	causal	processes	that	are	not	learned	effectively	by	the	most	com-
mon	algorithms	for	learning	causal	graphical	models.

• This	 is	despite	 the	 fact	 that	 the	 same	 learning	procedures	produce	observational
estimates	that	closely	approximate	the	programs’	observational	distribution.

• The	task	of	learning	the	structure	of	causal	models	with	context-dependent	causal
structure	remains	an	important	research	frontier.
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Causal	models extend	purely	probabilistic	models, enabling	reasoning	about	joint	distri-
butions	of	random	variables	in	the	presence	of	well-defined	interventions[2].
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