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1. Motivation 3. Empirical Methodology
To	what	extent	do	the	accomplishments	of	deep	RL agents	demonstrate	generalization, and
how	can	we	recognize	such	a	capability	when	presented	with	only	a	black-box	controller?

5. Conclusions
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For	example, an	agent	trained	to	play	the	Atari	game	of	Amidar	achieves	large	rewards
when	evaluated	 from	 the	default	 initial	 state, but small non-adversarial modifications
dramatically	degrade	performance.

2. Recasting Generalization
Naïve	evaluation	of	a	policy	on	held-out	training	states	only	measures	an	agent’s	ability	to
use data	after	it	is	collected. Using	this	method, we	could	incorrectly	claim	that	an	agent
has	generalized, even	if	it	only	performs	well	on	a	small	subset	of	states.

In this grid-world example, the agent can take actions up-right, right, and down-right.

We	partition	the	universe	of	possible	input	states	into	three	sets, according	to	how	the
agent	can	encounter	them	following	its	learned	policy � from s0 � S 0, the	set	of	initial
states.

• On-policy	states, S on, can	be	encountered	by	following � from	some s0.

• Off-policy	states, S off, can	be	encountered	by	following	any �� � �, the	set	of	all
policy	functions.

• Unreachable	states, S unreachable, can	not	be	encountered	by	following	any �� � �,
but	are	still	in	the	domain	of	the	state	transition	function T (s, a, s�).

We	define	a	q-value	based	agent’s	generalization	abilities	via	the	following, where � and
� are	small	positive	values. v�(s) is	the	optimal	state-value, v�(s) is	the	actual	state-value
by	following �, and v̂(s) is	the	estimated	state-value. q�(s, a), q�(s, a), and q̂(s, a), are	the
corresponding	state-action	values.

Definition	1	(Repetition) An	RL agent	has	high	repetition	performance, GR, if � > |v̂(s) �
v�(s)| and � > v�(s) � v�(s), �s � S on.

Definition	2	(Interpolation) An	RL agent	has	high	interpolation	performance, GI , if � >
|q̂(s, a) � q�(s, a)| and � > q�(s, a) � q�(s, a), �s � S off, a � A.

Definition	3	(Extrapolation) An	RL agent	has	high	extrapolation	generalization, GE , if � >
|q̂(s, a) � q�(s, a)| and � > q�(s, a) � q�(s, a), �s � S unreachable, a � A.

Given	a	parameterized	simulator	we	can	intervene	on	individual	components	of	latent
state	and	forward-simulate	an	agent’s	trajectory	through	the	environment.
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We	can	generate	off-policy	states	by	having	the	agent	take k random	actions	during	its
trajectory	(k-OPA) or	extracting	states	from	the	trajectories	of	alternative	agents	(AS) and
human	players	[1]	(HS).

4. Analysis Case-Study
To	demonstrate	theses	ideas	we	implement	Intervenidar, a	fully	parameterized	version	of
the	Atari	game	of	Amidar. Unlike	previous	work	on	adversarial	attacks	[1], interventions
in	Intervenidar	change	the	latent	state	itself, not	only	the	agent’s	perception	of	state.

We	train	the	state-of-the-art	dueling	network	architecture, double	Q-loss	function, and
prioritized	experience	replay	[3,4,5]	using	the	standard	pixel-based	Atari	MDP specifica-
tion	[2]	with	the	default	start	position	of	the	original	Amidar	game. After	convergence,
we	expose	the	agent	to	off-policy	and	unreachable	states.
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• We	propose	a	novel	characterization	of	a	black-box	RL agent’s	generalization	abil-
ities	based	on	performance	from	on-policy, off-policy, and	unreachable	states.

• We	provide	empirical	methods	for	evaluating	a	RL agent’s	generalization	abilities
using	intervenable	parameterized	simulators.

• We	demonstrate	these	empirical	methods	using	Intervenidar, a	parameterized	ver-
sion	of	 the	Atari	game	of	Amidar. We	find	that	 the	state-of-the-art	dueling	DQN
architecture	fails	to	generalize	to	small	changes	in	latent	state.
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